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ABSTRACT 

Granular-surfaced roadways in Iowa rural area frequently experience damage and 

degradation from the effect of rainfall, flooding, seasonal freeze-thaw cycles, heavy agricultural 

machinery and steadily increasing traffic loads. Rutting, potholes and frost boil problems 

appeared usually and leading these granular roads to unpassable. As a result, many counties have 

to close damaged roads for repairs and spend significant portions of their budgets on 

maintenance and rehabilitation of granular roads. Several stabilization methods for granular 

roads were examined for improving the performance and minimizing damages in Iowa by the 

previous completed Phase II Iowa Highway Research Board Project TR-664 “Low-Cost Rural 

Surface Alternatives: Demonstration Project”. To investigate additional stabilization methods 

suitable for use in Iowa, six mechanical and five chemical stabilization methods employing 

different types of virgin and recycled materials were examined and used to build test sections in 

this study. Comprehensive construction procedures were developed and 31 test sections were 

built in four counties distributed geographically around the state of Iowa in August through 

October 2018. Extensive laboratory, field tests, and photographic surveys were performed prior 

to construction, as well as after construction to monitor the performance of the demonstration 

sections. The shear strength and elastic modulus of granular roads surface course were obviously 

improved by one of the chemical methods, cement treated surface, and three of the mechanical 

methods, optimized gradation with clay slurry and two slag stabilization methods. The composite 

elastic modulus was improved by two cement treated methods and two mechanically methods, 

optimize gradation with clay slurry and aggregate columns. Several equipment was also found 

that can shorten the construction time and stabilize the soil more efficiently.  



www.manaraa.com

1 
 

CHAPTER 1.    INTRODUCTION 

Granular-surfaced roads in seasonally cold regions frequently experience damage and 

degradation from the effect of rainfall, flooding, seasonal freeze thaw cycles, heavy agricultural 

machinery and steadily increasing traffic loads, which leads to extensive damage such as frost 

heave, frost boils, thaw weakening, rutting and potholes. As a result, many counties spend 

significant portions of their budget on repair and maintenance of granular roads. Some county 

engineers have to post load restrictions or frost embargos to reduce heavy agricultural traffic 

loads in spring, since the saturated unbound granular materials loose strength when liquid water 

cannot drain efficiently and becomes trapped above the zone of frozen soils in the crucial spring 

thawing period. In some regions, low-strength of locally available aggregates further compound 

the problems.  

In the previous Phase I Iowa Highway Research Board (IHRB) Project TR-632 “Low-

Cost Rural Surface Alternatives” (White et al. 2013), an extensive analysis of existing literature 

on the topic of the construction and performance of granular-surfaced roads with respect to 

freeze-thaw damage and resistance were conducted. Several of the stabilization methods and 

technologies identified in the study were implemented for improving the performance and 

minimizing freeze-thaw damage of granular roads in the subsequent Phase II IHRB Project TR-

664 “Low-Cost Rural Surface Alternatives: Demonstration Project” (Li et al. 2015). Seventeen 

test sections and five control sections were constructed in Hamilton County on a heavily traveled 

two-mile section of granular-surfaced road that required frequent maintenance during previous 

thawing periods. Construction procedures and costs for the demonstration sections were 

documented and the maintenance requirements were tabulated through two seasonal freeze-thaw 
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periods. The most effective and economical methods suitable for the soil and climate conditions 

in the Iowa region were identified.  

For the currently ongoing IHRB Project TR-721 “Low-Cost Rural Surface Alternative 

Phase III: Demonstration Project” detailed in this thesis, 31 addition demonstration sections were 

built in four counties distributed geographically around the state of Iowa utilizing 6 mechanical 

and 5 chemical stabilization methods and employing different types of virgin and recycled 

materials.  

The mechanically stabilized demonstration sections were constructed in Howard County 

(9 sections total) and Cherokee County (8 sections total), including one control section in each 

county. The following 8 types of mechanically stabilized sections were constructed in these two 

counties: 

1. aggregate columns 

2. optimized gradation with clay slurry 

3. ground tire rubber mixed at 20% by volume in a 2 in. base layer of aggregate and 

covered by a 2 in. surface layer of aggregate (in Howard county only) 

4. recycled asphalt pavement (RAP) mixed at 50% by volume with aggregates 

5. 2-in. thick slag surface overlying 2-in. existing aggregate base (Source #1) 

6. 2-in. thick slag surface overlying 2-in. existing aggregate base (Source #2) 

7. 4-in. thick slag surface (Source #1) 

8. 4-in. thick slag surface (Source #2) 

The feasibility of the aggregate column method was verified in the previous IHRB 

project TR-664, and it had the lowest initial cost of all methods examined, while improving the 

freeze-thaw performance of the roadway by reducing the occurrence of frost-boils. A new pattern 
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with a denser grid of columns was applied in this study, to help minimize rutting which was 

observed near the shoulder in the previous study (Li et al. 2015).  

In the previous IHRB Project TR-685 “Feasibility of Granular Road and Shoulder 

Recycling” (Li et al. 2018), the in-situ granular surface materials were recycled by blending them 

with virgin materials in optimum proportions, and recommended construction procedures were 

developed. According to the study, a proper gradation of surface materials along with plastic 

fines for binding can greatly improve the strength and longevity of roadway surfaces, while 

helping to minimize freeze-thaw damage. The Microsoft Excel-based program developed by Li 

and Ashlock (2018) in the TR-685 project was utilized in the present study to calculate the 

quantity of fresh quarry materials needed for mixing with existing surface materials to approach 

the optimum design gradations. To help bind the coarse aggregates and reduce material loss, the 

previous study also recommended mixing plastic fines into the top 50.8 mm to 76.2 mm (2 to 

3 in.) of the roadway. The goal was to form a surface crust underlain by a cleaner, load-bearing 

aggregate layer, because the fines can greatly reduce shear strength of granular materials under 

prolonged wet conditions (Li et al. 2018). The theory is that when the top few inches of the 

surface course is mixed with clay, the fines perform the desired function of binding the larger 

aggregates to reduce material loss while preserving the shear strength of the deeper aggregates in 

the lower part of the surface course. However, the previous study employed bags of powdered 

bentonite to achieve the desired plasticity, which was labor intensive to incorporate and the 

bentonite content was significantly reduced after one freeze-thaw season. In this study, a newly 

available clay slurry from Pattison Sand Company was applied to the optimized gradation 

mixture instead of using bentonite or local clays.  
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Due to the economy and past successful performance of the aggregate columns and 

optimized gradation with clay slurry, test sections using these two methods were constructed in 

all four counties, including Washington and Hamilton, which otherwise featured chemical 

stabilization methods.   

Ramaji (2012) performed a review of prior literature and concluded that use of different 

sizes of waste rubber in soil reinforcement could be a low-cost and effective method for soil 

stabilization.  In a previous study, mixing shredded tires with sand showed the greatest 

improvement in shear strength using a rubber content of 6% by weight (20% by volume) and 

shredded tire size of 5x5 mm for triaxial tests, while CBR tests indicated the highest penetration 

resistance at a rubber content of 3% by weight (10% by volume) for the same shred size 

(Hassona et al. 2003). In this study, ground tire rubber with a top size of 9.5 mm (3/8 in.) was 

mixed with aggregate at 20% by volume in the bottom 50.8 mm (2 in.) of the granular surface 

course in Howard County.  

Recycled Asphalt Pavement has been used in granular roads for many years. The design 

function of RAP is binding fines and course aggregates in the surface layer. However, Koch et 

al. (2011) investigated the use of RAP in gravel roads in two Wyoming counties and showed that 

RAP was helpful for reducing dust but gave no improvement in road condition. The study also 

mentioned that compacting a RAP blend with gravel will help in maintaining long-term road 

serviceability. The two RAP demonstration sections in the present study were constructed by 

mixing 50% locally available RAP with the existing granular surface material which was then 

blended and roller compacted.  

Mathur et al. (1999) investigated utilization of industrial wastes in low-volume roads and 

indicated that steel slag, which is a very dense hard material that can be readily crushed to a 
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suitable particle shape and size, produces an excellent aggregate with high crushing strength, low 

abrasion value, and excellent skid resistance. They also concluded that the slag mixture initially 

behaves like unbound material, but it generally turns into a bound material because of the self-

stabilization characteristics of slags. In the present study, four steel slag sections using two 

different slag sources were constructed in both Howard and Cherokee counties. Considering that 

steel slag is harder than natural aggregates and could therefore possibly accelerate aggregate 

deterioration, the slag was placed in separate layers above the existing aggregate base and was 

not blended with the natural aggregates.  

Chemical stabilization methods were implemented in Washington County and Hamilton 

County, and included the following: 

1. cement treated subgrade (in Washington County only) 

2. cement treated aggregate surface course (not yet constructed in Hamilton County) 

3. TeamLab T15 Base One (a silicic acid, sodium salt concentrated liquid stabilizer 

which will be denoted SA-CLS) 

4. SSPCo EMC Squared (a neutral pH, non-ionic concentrated liquid stabilizer which 

will be denoted NI-CLS) 

5. Claycrete (an ionic concentrated liquid stabilizer, which will be denoted I-CLS) 

 In Henry et al. (2005), 6%-8% Portland cement by weight was mixed into native road 

surface materials to create a stabilized surface course that had significantly improved weighted 

CBR values in the top 76.2 mm (3 in.) of cement treated soil during spring thawing. In the 

present study, two types of cement treated test sections were constructed; 7% Portland cement by 

weight in the 101.6 mm (4 in.) thick surface aggregate course with an untreated subgrade, and a 

304.8 mm (12 in.) thick subgrade layer treated at 5% by weight with an untreated surface course.  
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A study by Jahren et al. (2011) showed that Base One can mechanically bind fine particles. 

Although it did not provide noticeable improvements on US 20 shoulders in that particular study, 

it can be easily applied with typical DOT maintenance equipment. In the present study, a 

representative from the manufacturer was present to oversee construction to achieve the best 

possible performance. Based on their recommendations, 0.5 in. of subgrade was incorporated 

with existing and virgin aggregate materials to construct the test sections. 

In projects funded by the Bureau of Affairs (2014) on the Mescalero Apache Reservation in 

New Mexico, EMC Squared was used for base course stabilization. Stabilized base layers treated 

by EMC squared can exhibit superior resistance to freeze-thaw, and environmental impacts were 

examined in previous project. According to the manufacturer, the expected performance can be 

achieved by carefully following the recommended construction procedures and incorporating 

subgrade soils within the surface course to a total depth of 10 in. during treatment. In the present 

study, test sections were therefore constructed by incorporating a target depth of 6 in. of 

subgrade material with the surface course.  

Huang et al. (2003) evaluated the characteristics of Claycrete stabilizer for improving clay 

soils, and determined that the stabilizer could improve the performance of the soil in freeze-thaw 

conditions. In the present study, a representative from the manufacturer was present and 

instructed the county’s crews in construction of the Claycrete test sections. Approximately 0.5 in. 

of subgrade was incorporated with the surface curse materials.   

In the remainder of this thesis, Chapter 2 summarizes the laboratory and field test methods 

used to evaluate and compare the various stabilization methods. Chapter 3 provides details on the 

sources and properties of the geomaterials and various stabilizers used in this study. Chapter 4 

introduces the test site selections and Chapter 5 describes the procedures and equipment used for 
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constructions of the various test sections. Chapter 6 presents the results and discussion of 

laboratory and field tests conducted on the test sections before and after construction. Chapter 7 

includes the conclusions and outcomes derived from this study, as well as recommendations for 

further research. Supporting materials are included in the appendices.  
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CHAPTER 2.    METHODS 

This chapter includes two parts: (1) laboratory testing methods used to determine soil 

index properties, compaction behavior, and shear strength of the geomaterials used, and (2) field 

testing methods used to determine in-situ shear strength, stiffness, surface material dry unit 

weight, and moisture content for the granular-surfaced test sections.  

2.1 Laboratory Tests 

Laboratory tests conducted to determine soil index properties, compaction behavior, 

shear strength and durability are described below. They were used to help develop the 

recommended construction procedures and associated calculations for the test sections.   

2.1.1 Soil Index Properties 

To determine soil index properties and classification of the geomaterials, particle-size 

distributions (gradations) were determined by sieve and hydrometer tests, liquid limit tests, and 

plastic limit tests. The soils were then classified according to American Society for Testing and 

Materials (ASTM) standard practice for the Unified Soil Classification System (USCS).  

2.1.1.1 Particle-Size Distribution 

Particle-Size distribution determination for geomaterials was performed according to 

ASTM D6913/D6913M – 17 “Standard Test Methods for Particle-Size Distribution (Gradation) 

of Soils Using Sieve Analysis” and ASTM C136/C136M – 14 “Standard Test Method for Sieve 

Analysis of Fine and Coarse Aggregates.” The latter Standard was only used for determining the 

gradation of soil between 3-in. (75-mm) and No. 200 (75-µm) sieves when hydrometer analysis 

was not required. The equipment used for this part of sieve analysis is shown in Figure 1. 
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Figure 1 Sieve analysis device 

The gradations of particles smaller than the No. 200 (75-µm) sieve were determined by 

using ASTM D7928 – 17 “Standard Test Method for Particle-Size Distribution (Gradation) of 

Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis”. This test was performed 

on soil passing the No. 10 (2.0-mm) and the results are presented as the mass percent finer versus 

the log of the particle diameter. The equipment used for this test is shown in Figure 2.  

 

Figure 2 Hydrometer test equipment 
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2.1.1.2 Atterberg Limits (Liquid Limit, Plastic Limit, and Plasticity Index) 

The liquid limit (LL) of geomaterials passing the No. 40 (425-µm) sieve was determined 

using the fall cone test in accordance with Wasti (1987), and at least three data points were 

plotted to determine the LL for each sample. The plastic limit (PL) and plasticity index (PI) were 

determined in accordance with ASTM D4318 – 17e1 “Standard Test Methods for Liquid, Plastic 

Limits, and Plasticity Index of Soils” using the plastic limit rolling device. The devices used for 

the fall cone and plastic limit tests are shown in Figure 3. To determine the PI, both LL and PL 

were first rounded to the nearest integer values. The geomaterials were reported as non-plastic 

(NP) if either the LL or PL could not be determined, or the PL was equal to or greater than the 

LL, in accordance with ASTM D4318.  

 

Figure 3 Fall cone test device and plastic limit rolling device 

2.1.1.3 Soil Classification 

The results of the particle-size distribution and Atterberg limits tests were used for 

classification of soils by the USCS and AASHTO systems in accordance with ASTM D2487 – 

17 “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil 

Classification System)” and ASTM D3282 – 15 “Standard Practice for Classification of Soils 

and Soil-Aggregate Mixtures for Highway Construction Purposes.” 
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2.1.2 Compaction Behavior 

The relationships between moisture content and dry unit weight of geomaterials were 

determined by conducting Standard Proctor compaction test in accordance with ASTM D698 – 

12e2 “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using 

Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3 )).” To prepare fine-grained geomaterials to 

predetermined moisture contents, the Hobart mixer shown in Figure 4 was used. According to 

the material gradation, the mold size was selected following the specifications of ASTM D698. 

For soils containing oversize particles ASTM D4718/D4718M – 15 “Standard Practice for 

Correction of Unit Weight and Water Content for Soils Containing Oversize Particles” was used.  

 

Figure 4 Hobart mixer 

2.1.3 Shear Strength Tests 

To evaluate and compare the effects of the clay fraction on the undrained shear strength 

properties of compacted geomaterials, unconfined compressive strength (UCS) and California 

bearing ratio (CBR) tests were performed. These tests are detailed in the following sections. 

2.1.3.1 Unconfined Compressive Strength Tests 

To evaluate the strength of compacted untreated and chemically stabilized soil 

specimens, the UCS tests were generally performed in accordance with ASTM D2166/D2166M 
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– 16 “Standard Test Methods for Unconfined Compressive of Cohesive Soil”, except cylindrical 

specimens with 2 in. height and 2 in. diameter were prepared by using the 2-by-2 compaction 

apparatus developed at Iowa State University (ISU). According to a study by Oflaherty et al. 

(1963), the 2-by-2 compaction device can be used to prepare specimens having moisture-density 

conditions similar to those obtained by standard Proctor compaction tests. UCS tests were 

performed on specimens consisting of the minus No.40 fraction of the samples. The 2-by-2 

compaction device and a sample during a UCS test are shown in Figure 5.   

 

Figure 5 Photographs of a) 2-by-2 compaction device b) UCS test device 

2.1.3.2 California Bearing Ratio Tests 

Soaked CBR tests were performed to evaluate the effect of the clay fraction on shear 

strength of granular surface materials under saturated conditions. The testing procedures 

followed ASTM D1883 – 16 “Standard Test Method for California Bearing Ratio (CBR) of 

Laboratory-Compacted Soils.” All of the specimens were compacted to standard Proctor 

maximum dry unit weight and soaked for at least 24 hours before testing. The CBR test device is 
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shown in Figure 6. Surcharge weight was applied on the specimen at uniform rate of 1.3 

mm/min. The load applied to the specimen and corresponding penetration depth were recorded 

and the load-penetration curve was plotted for CBR determination.   

 

Figure 6 CBR test device 

2.1.4 Durability 

The slaking test is not a standard geotechnical experimental test, but rather a test for soil 

quality to indicate the stability of soil aggregates and resistance to erosion. Slaking is the 

breakdown of a lump of soil into smaller fragments upon wetting (McMullen 2000). Slaking 

tests were also conducted in IHRB Project TR-582 to evaluate long-term moisture susceptibility 

(Gopalakrishnan et al. 2010). In the present study, the 2-by-2 samples were also used for slaking 

tests, as shown in Figure 7. To perform the slaking tests, specimens of compacted minus No. 40 

material were placed on a No. 4 sieve and soaked in tap water at room temperature. The 

specimens were then observed over a period of several minutes to hours, and the elapsed time at 
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which the structure of a specimen can no longer be observed was recorded as its slaking time. 

For example, the samples shown in Figure 7 completely lost stability after 30 minutes of 

soaking.  

  

Figure 7 Slaking test for 2-by-2 specimens of Washington existing surface aggregate mixing 7% 
clay slurry 

 

2.2 Field Tests 

The field tests performed to determine the in-situ moisture content, surface course 

density, surface quality, elastic modulus and the shear strength of the surface and subgrade layers 

are presented in the following sections. Light Weight Deflectometer (LWD), Falling Weight 

Deflectometer (FWD), and Dynamic Cone Penetrometer (DCP) tests were conducted for 

investigation of the existing roadway materials prior to stabilization. Falling Weight 

Deflectometer (FWD), LWD, DCP, Dustometer, Nuclear Gauge and visual/photo surveys were 

conducted for the demonstration sections after construction.  

2.2.1 Dynamic Cone Penetrometer (DCP) Tests 

The dynamic cone penetrometer (DCP) test was conducted in accordance with ASTM 

D6951/D6951M – 18 “Standard Test Method for Use of the Dynamic Cone Penetrometer in 
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Shallow Pavement Applications” to determine the relative strength profiles via CBR correlations 

for the surface course and subgrade material of all demonstration sections. The DCP equipment 

used in this study follows the ASTM standard and was made by Kessler Soils Engineering 

Products (Figure 8). In the DCP test, the operator drives the DCP tip into the soil with an 8-kg 

[17.6-lb] sliding hammer and 20 mm [0.79 in] diameter disposable cones. The penetration 

distance measured per blow is referred to as the dynamic cone penetrometer index (DCPI).  

 

Figure 8 Kessler K-1000 dynamic cone penetrometer 

The DCPI values with units of millimeters per blow were measured for all demonstration 

sections and used in the empirical correlations of Equation 1 through 3 to estimate the in-situ 

CBR (referred to as DCP-CBR) values: 

  	 	 	 	 	 	 	 10	 	 	 ,	

																																																																		 292/ . 	           (1) 

  	 	 	 	 10,						 1/ 0.017019 ∗ 	                     (2) 

  	 	 ,																																				 1/ 0.002871 ∗ 		         (3) 
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All the demonstration sections built in this project were analyzed as two-layered systems, 

consisting of an aggregate surface layer and a subgrade layer. To determine the average DCP–

CBR value for each layer, the boundary between the two layers was identified by a sharp change 

in the slope of the cumulative blows versus depth plot. An example of using the first criterion is 

shown in Figure 9.  

 
(a)                                      (b)                                     (c) 

Figure 9 Example of DCP depth profiles: a) cumulative blows b) DCPI and c) DCPCBR 

The weighted average DCPCBR of the surface aggregate layer will be denoted as 

DCPCBRAGG, and the weighted DCPCBR of the subgrade up to the maximum depth of 

interest (609.6 mm or 24 in.) will be denoted as DCPCBRAGG. The weighted average 

DCPCBR for either layer can be calculated using Equation 4: 

	 	 ∗ ∗ ⋯ ∗

∑
   (4) 

where Hi is the thickness of the ith layer. 
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2.2.2 Falling Weight Deflectometer (FWD) Tests 

The falling weight deflectometer (FWD) tests were performed by the Iowa DOT using a 

SN121 JILS FWD device shown in Figure 10. After a static load was applied, three dynamic 

loads 1,814 kg (4,000 lb), 2,268 kg (5,000 lb), and 2,721 kg (6,000 lb), were applied. The actual 

applied forces were recorded by a load cell, and geophones recorded the deflections of the 

roadway surface. A segmented loading plate was used to ensure a uniform stress distribution 

over the plate (Crovetti et al. 1989). 

 

Figure 10  SN121 JILS falling weight deflectometer used in this study 

According to the AASHTO Guide for Design of Pavement Structures (AASHTO 1993), 

the elastic moduli of the surface course and subgrade layer can be calculated using FWD test 

data. The AASHTO approach combines the Boussinesq theory (Boussinesq 1885) and 

Odemark’s method of equivalent layer thickness (MET) assumption (Odemark 1949) for 

calculating moduli of a two-layered system, and is based on the equivalent layer theory. The 

Boussinesq theory in the form of Equation 5 can be used to calculate stresses, strains, and 

deformations at a given radius and depth in a homogeneous linear elastic half-space, caused by a 

point load applied on the surface. The vertical surface deflection of a homogeneous layer 
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material underneath the loading plate is calculated by integrating Boussinesq’s solution over a 

circular area, giving Equation 6 since the FWD dynamic load was applied to a circular plate.  

, √
2 1        (5) 

,         (6) 

where the  is the radius from the point load;  is vertical depth from the point load; ,  is the 

vertical deflection at radius  and depth ;  is elastic modulus; and  is maximum vertical 

force.  

According to AASHTO (1993), for pavement systems, deflections measured at a 

sufficiently large distance from the load are considered to be independent of the size of the 

loading plate and caused only by subgrade deformation. Therefore, the elastic modulus of the 

subgrade (E − ) can be calculated using a single deflection measurement as shown in 

Equation 7: 

,
         (7) 

By converting the thickness of the top layer into an equivalent thickness (he) of additional 

subgrade material by Equation 8 below, the elastic modulus of the surface aggregate layer 

( −AGG 	can	be	determined	according	to	that	Odemark’s assumption which is used to 

determine the deflection of a two-layer system under an applied load, where  is the equivalent 

single thickness of the two-layer system and  is the thickness of surface layer: 

         (8) 
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The surface deflection should be measured at a distance greater than the effective radius 

( ) of the stress bulb at the interface of the top and bottom layers (AASHTO 1993):  

        (9) 

As the measurement distance increases, the magnitude of the deflection decreases, which 

increases the effects of measurement error in the calculated subgrade modulus. Based on a series 

of numerical analyses, AASHTO (1993) recommended that the deflection ( , ) used for 

calculating the subgrade modulus in Equation 9 be greater than or equal to 0.7 .  

Combining the Boussinesq theory and Odemark’s assumption, the total surface deflection 

directly under the loading plate resulting from the deformation of both the top and bottom layers 

can be calculated using Equation 10. 

,
1 2 1

1
3 2

1 1

1
2

    (10) 

After matching the calculated deflection to the measured deflection under the loading 

plate, the surface layer elastic modulus ( ) can be determined by using Equation 10.  

2.2.3 Nuclear Density Gauge 

To measure the in-situ density and moisture of the test section soil, the MC3 Elite nuclear 

density gage was used in accordance with ASTM D6938-17a “Standard Test Methods for In-

Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow 

Depth)”. These tests were performed by the Iowa DOT Office of Construction and Materials. 
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Figure 11 MC3 Elite nuclear density gauge 

2.2.4 Light Weight Deflectometer (LWD) Tests  

The light weight deflectometer (LWD) test was conducted in accordance with ASTM 

E2583-07 (Reapproved 2015) “Standard Test Method for Measuring Deflections with a Light 

Weight Deflectometer (LWD)” to rapidly evaluate the composite elastic modulus of the test 

sections. The test involves dropping a falling weight on a buffer system that transmits the load 

pulse onto a circular loading plate on the road surface. The peak deflection of the ground surface 

is measured by an embedded accelerometer. The Zorn Model ZFG 3000 LWD device was used 

in this study (Figure 12). The manufacturer states that this device suitable for stiff cohesive soils, 

mixed soils, and coarse-grained soil with maximum particle size less than 63.5 mm (2.5 in.).  
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Figure 12 Zorn Model ZFG 3000 LWD device 

Table 1 Dimensions of Zorn ZFG 3000 LWD device 

Categories Parameter 

Falling Weight  10 kg 22.05 lb 

Drop Height 710 mm 27.95 in. 

Maximum Applied Force 7.07 kN 1,589.4 lb 

Total Load Pulse 18 ± 2 ms  

Measuring Range 0.2 to 30 (± 0.02) mm 0.0079 to 1.18 (± 0.00079) in. 

Plate Diameter 300 mm 11.81 in. 

Plate Thickness 20 mm 0.79 in. 

Type of Buffer Steel spring 

Deflection Transducer Accelerometer in plate 
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For each LWD test point, three seating drops were applied to improve contact between 

the loading plate and roadway surface, then three subsequent drops were applied for measuring 

the deflections. The applied force,  can be calculated by Equation 11, where  is the mass of 

the falling weight,  is the acceleration due to gravity (9.81 m/s2),  is the drop height, and  is 

the spring material stiffness constant, equal to 362,396 N/m for this device:  

2            (11) 

Based on Boussinesq’s solution (elasticity theory), the elastic modulus (ELWD) can be 

calculated from the average peak deflection for the three pulses of subsequent drop loads using 

Equation 12. 

          (12) 

Where  (mm) is the measured average peak deflection at the center of the loading 

plate;  is the Poisson’s ratio (assumed to be 0.4);  (MPa) is the normalized applied peak 

stress;  (mm) is the radius of the plate; and  is a shape factor that depends on the assumed 

contact stress distribution (Table 2). The shape factor of 2 was assumed for the LWD tests, 

which corresponds to an inverse parabolic to uniform stress distribution and material with 

intermediate characteristics. The influence depth of an LWD test measurement is approximately 

equal to one or two times the diameter of its loading plate (Stamp et al. 2023). 
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Table 2 Summary of shape factors in elastic modulus estimation 

(Terzaghi and Peck 1967; Fang 1991) 

 

 

2.2.5 Dustometer 

The dustometer device used to evaluate the fugitive dust emissions of the test sections 

was developed by Colorado State University (Sanders and Addo 2000). The dustometer device is 

a metal box attached to a pickup truck’s rear bumper behind the rear-wheel as shown in Figure 

13b. A 1/3-horsepower high-volume suction pump is attached to the metal box by 2 in. hose. The 

suction pump is powered by an electric generator. An 8 in. x 10 in. EMP 2000 glass microfiber 

filter paper was placed in the metal box for each test to catch the dust generated by the truck 

tires, and sucked up by the vacuum pump (Figure 13e and Figure 13f). The mass of the filter 

paper and dust was measured before and after each test to determine the mass of dust collected. 

The results were then converted to grams of dust per mile.    
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Figure 13 (a, b, and c): Dustometer test setup, (d): a test conducted on the granular-surfaced road 
test sections, (e): EMP 2000 glass microfiber filters, and (f): filter paper before and after test. 

2.2.6 Visual Surveys with Photographs  

Photographs of each test section’s surface conditions were taken on the day of the DCP 

and LWD tests, and any surface distress such as rutting or potholes were noted. These visual 

surveys were conducted after test section construction and after periods of thawing and 

precipitation to assess the performance of the various control and stabilized sections. Condition 

rating reports for each test section were also distributed to the motor grader operators, and they 

were asked to complete the forms and rate the surface conditions of the test sections when 

performing maintenance.  
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CHAPTER 3.    MATERIALS 

This chapter presents the sources, descriptions, and soil index properties of the various 

geomaterials used in this study. The types and sources of chemical stabilizers used are also 

discussed.  

3.1 Geomaterials 

The soil index properties and classifications of a total of 8 types of materials existing at 

the test sites prior to construction are summarized in Table 3, including surface and subgrade 

materials collected from the test sites located in Cherokee, Howard, Hamilton and Washington 

counties. A total of 14 additional types of construction geomaterials from different quarries 

including road stone, clean aggregates, river rock, concrete stone, rubber tire chips, steel slag, 

and clay slurry were used in this study. The experimentally determined soil index properties and 

classifications of these geomaterials are summarized in Table 4. 
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Table 3 Soil index properties of the existing materials of test sections 

Parameter 
Cherokee 
Surface  

Cherokee 
Subgrade 

Howard 
Surface  

Howard   
Subgrade 

Hamilton 
Surface  

Hamilton 
Subgrade 

Washington 
Surface  

Washington   
Subgrade 

Particle-size Distribution Results (ASTM D6913) 

Gravel Content (%) 25.9 5.7 43.3 2.8 20.4 3.3 32.9 0.2 

Sand Content (%) 58.4 36.8 37.6 34.9 56.3 33.0 29.4 5.4 

Silt Content (%) 9.9 34.2 12.7 26.3 12.7 31.3 23.0 47.9 
Clay Content (%) 5.8 23.3 6.2 36.0 10.6 21.4 14.7 46.5 

D10 (mm) 0.0192 - 0.0123 - 0.0044 - 0.0022 - 
D30 (mm) 0.3148 0.0114 0.3117 0.0024 0.1700 0.0038 0.0315 - 
D60 (mm) 2.3251 0.1203 5.5170 0.0385 1.3814 0.0495 2.3741 0.0100 

Coefficient of 
Uniformity, cu 

121.12 - 449.19 - 312.73 - 1064.27 - 

Coefficient of 
Curvature, cc 

2.22 - 1.43 - 4.74 - 0.19 - 

Atterberg Limits Test Results (Wasti 1987 & ASTM D4318-17) 

Liquid Limit (%) NP 38 18 41 19 40 26 44 
Plastic Limit (%)   18 13 19 14 18 16 20 

AASHTO and USCS soil classification (ASTM D3282-17 & ASTM D2487-17) 

AASHTO 
Classification 

A-1-b A-6(9) A-1-b A-7-6(11) A-1-b A-6(12) A-4(0) A-7-6(24) 

USCS 
Classification 

SM CL GC-GM CL SC-SM CL GC CL 

Group Name 
Silty sand 

with gravel 
Sandy lean 

clay 

Silty clayey 
gravel with 

sand 

Sandy lean 
clay 

Silty clayey 
sand with 

gravel 

Sandy lean 
clay 

Clayey 
gravel with 

sand 
Lean clay      
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Table 4 Soil index properties of the quarry and byproducts used in this study 

Parameter 

Hamilton 
Grandgeorge 
Quarry, Road 

Stone 

Hamilton 
Alden 

Quarry, 1" 
Road Stone 

Hamilton 
Grandgeorge 
Quarry, 1" 

Clean 

Cherokee DOT 
Quarry, River 

Rock 

Cherokee 
Moore 
Quarry, 
Class A 

Road Stone 

Cherokee 
Moore 

Quarry, D57 
Concrete 

Stone 

Howard 
County 
Dotzler 
Quarry, 
Class A 

Particle-size Distribution Results (ASTM D6913) 

Gravel Content (%) 67.9 69.6 98.7 26.4 52.8 99.3 60.0 

Sand Content (%) 25.2 24.4 1.3 70.6 34.6 0.3 25.0 
Silt Content (%) 

6.9 6.0 0.0 3.0 12.6 0.4 15.0 
Clay Content (%) 

D10 (mm) 0.2823 0.2301 6.9029 0.4747 - 8.7655 - 
D30 (mm) 4.2377 4.6672 10.1876 1.0562 1.8671 11.9182 2.7484 
D60 (mm) 12.5800 11.9082 14.7346 2.6470 7.1321 15.7751 9.0070 

Coefficient of 
Uniformity, cu 

44.56 51.74 2.13 5.58 - 1.80 - 

Coefficient of 
Curvature, cc 

5.06 7.95 1.02 0.89 - 1.03 - 

Atterberg Limits Test Results (Wasti 1987 & ASTM D4318-17) 

Liquid Limit (%) NA NA NA NA NA NA NA 
Plastic Limit (%)               

AASHTO and USCS soil classification (ASTM D3282-17 & ASTM D2487-17) 

AASHTO 
Classification 

A-1-a A-1-a GP A-1-b A-1-a A-1-a A-1-a 

USCS 
Classification 

GP-GM GP-GM A-1-a SP GM GP GM 

Group Name 
Poorly graded 
gravel with silt 

and sand 

Poorly 
graded 

gravel with 
silt and sand 

Poorly graded 
gravel 

Poorly graded 
sand with 

gravel 

Silty gravel 
with sand 

Poorly graded 
gravel 

Silty gravel 
with sand 
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Table 4. (continued) 

 
Washington 

Conklin Quarry, 
3/4" Class A 

Crushed Stone 

Washington 
Conklin 

Quarry, 1" 
Road Stone 

Liberty Tire 
Recycling, 

7/8" Rubber 
Tire Chips 

Liberty Tire 
Recycling, 3/8" 

Rubber Tire 
Chips 

Phoenix 1” 
Steel Slag 

Harsco ¾” 
Steel Slag 

Pattison 
Clay Slurry 

Particle-size Distribution Results (ASTM D6913) 

Gravel Content (%) 58.0 69.5 100.0 66.1 51.5 40.1 0.0 

Sand Content (%) 31.6 19.4 0.0 33.9 44.9 54.7 0.0 
Silt Content (%) 

10.4 11.1 0.0 0.0 3.6 5.2a 
55.2 

Clay Content (%) 38.5 
D10 (mm) - - 7.9857 3.1182 0.4928 0.2288 - 
D30 (mm) 2.5144 4.5323 11.0930 4.5196 2.3204 1.3870 0.0021 
D60 (mm) 8.8969 11.8516 14.2226 6.2466 6.8854 4.7628 0.0164 

Coefficient of 
Uniformity, cu 

- - 1.78 2.00 13.97 20.81 - 

Coefficient of 
Curvature, cc 

- - 1.08 1.05 1.59 1.76 - 

Atterberg Limits Test Results (Wasti 1987 & ASTM D4318-17) 

Liquid Limit (%) NA NA NA NA NA NA 53 
Plastic Limit (%)             22 

AASHTO and USCS soil classification (ASTM D3282-17 & ASTM D2487-17) 

AASHTO 
Classification 

A-1-a A-1-a A-1-a A-1-a A-1-a A-1-a A-7-6(32) 

USCS 
Classification 

GP-GM GP-GM GP GP GW SW-SM CH 

Group Name 
Poorly graded 
gravel with silt 

and sand 

Poorly 
graded 

gravel with 
silt and sand 

Poorly graded 
gravel 

Poorly graded 
gravel with 

sand 

Well-graded 
gravel with 

sand 

Well-graded 
sand with silt 

and gravel 
Fat clay 

a Percentage shown includes both silt and clay content.
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3.1.1 Existing Materials Collected from Test Sites 

Representative samples of the existing surface aggregate and subgrade materials were 

collected from Vail Avenue between 300th Street and 310th Street in Hamilton County, Old 21 

Road between 480th Street and 490th Street in Cherokee County, 100th Street between Pine 

Avenue and Quail Avenue in Howard County, and 260th Street between Palm Avenue and 

Quince Avenue in Washington County. The surface aggregate samples were collected in July 

2018, and the subgrade material samples were collected in August 2017. Particle-size 

distribution and Atterberg limits tests were conducted on these eight types of materials to 

determine the soil index properties, which are shown in Table 3. The particle-size distribution 

curves of these materials are shown in Figure 14 and Figure 15. Because they had been 

deteriorated by traffic for some time, all of the existing surface materials fell outside the Iowa 

DOT granular surfacing materials specifications. The shaded area indicates the Iowa DOT 

specification for granular surfacing material Class A&B (4120) (Iowa DOT 2012). 
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Figure 14 Particle size distribution curves of samples from Hamilton County and Washington 
County 
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Figure 15 Particles size distribution curves of samples from Cherokee County and Howard 
County 

3.1.2 Rubber Tire Chips, Steel Slag and Clay Slurry 

The rubber tire chips used in this study were obtained from Liberty Tire Recycling LLC 

in Des Moines, IA. The Phoenix 1” steel slag was obtained from Phoenix Service LLC in 

Wilton, IA.  The Harsco ¾” steel slag was obtained from Harsco Metals & Minerals. The 

Pattison clay slurry was obtained from Pattison Sand Company in Clayton, IA. Figure 16 shows 

1 in. grid scaled photographs of samples of rubber tire chips and steel slag. The Pattison clay 

slurry is shown in Figure 17. 
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Figure 16 Sample of (a) Harsco3/4" steel slag, (b) Phoenix 1" steel slag, (c) 3/8" rubber tire 
chips, and (d) 7/8" rubber tire chips. Grid size = 1 in. 

 

Figure 17 Pattison clay slurry 
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Table 5 shows the experimentally determined dry unit weight of the rubber tire chips and 

steel slag, optimum moisture content of the steel slag, and solids content of the clay slurry. The 

dry unit weights of the rubber tire chips and steel slag were determined using the standard 

proctor compaction test (ASTM D689-12e2). The solids content of the clay slurry was calculated 

as the mass of dry clay solids after completely oven drying at 50°C divided by the total slurry 

mass. The particle-size distribution curves for these materials are also shown in Figure 18. Both 

the Phoenix 1” steel slag and Harsco ¾” steel slag come close to meeting the Iowa DOT 

specifications (4120) (Iowa DOT 2012) for Class A&B granular surfacing material.  

Table 5 Parameters of rubber tire chips, steel slag, and clay slurry 

Parameter 
 7/8" Rubber 
Tire Chips 

3/8" Rubber 
Tire Chips 

Phoenix Steel 
Slag 

Harsco Steel 
Slag 

Pattison Clay 
Slurry 

Dry Unit Weight 
(lb/ft3) 

46.6 46.6 144.5 153.0 - 

Dry Unit Weight 
(kN/m3) 

7.3 7.3 22.7 24.0 - 

O.M.C. a (%) - - 4% 9%  

Solids Content (%) - - - - 21%-29% 
a Optimum Moisture Content  
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Figure 18 Particle-Size distribution curves of rubber tire chips, steel slag and clay slurry 

3.1.3 Quarry Products and Recycled Asphalt Pavement 

The quarry products used for the demonstration sections were purchased from the 

following sources: the Martin Marietta Grandgeorge and Alden quarries for the materials in 

Hamilton County, the River Products Conklin quarry for Washington County, the Dotzler quarry 

for Howard County, and the Martin Marietta Moore quarry and Cherokee County DOT quarry 

for Cherokee County. The recycled asphalt pavement (RAP) used for demonstration sections in 

Howard County and Cherokee County were obtained from the nearest sources to the test sites.  

3.2 Chemical Stabilizers 

Type I/II Portland cement, TeamLab T15 Base One, SSPCo EMC Squared (1000), and 

Claycrete were used to improve performance and durability of the granular surface materials in 5 

test sections in Washington County and 3 test sections in Hamilton County. The proposed 
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cement treated section in Hamilton County will be constructed in summer or fall of 2019. The 

details of these four chemical stabilizers are shown in Table 6. 

Table 6 Sources of chemical stabilizers used in this study 

Chemical Stabilizer Type Manufacturer Source 
Type I/II cement Ash Grove Cement Co Des Moines, IA 

TeamLab T15 Base One Team Laboratory Chemical Corp. Detroit Lakes, MN 
SSPCo EMC Squared (1000) Soil Stabilization Products Company, Inc. Merced, CA 

Claycrete Claycrete North America Sioux City, IA 
 

The application rate of TeamLab T15 Base One was 0.005 gallons per square yard per 

inch of stabilized reclamation depth (see MNDOT specification of Figure 66 in Appendix). 

According to Jahren et al. (2011), the material to be stabilized with T15 Base One should have a 

binder (clay) content of 8 to 15%. The application rate of SSPCo EMC Squared (1000) was 

0.067 gallons per cubic yard (SSPCo 2017).  For Claycrete, the suggested application rate of 

0.0404 gallons per cubic yard (Road Pavement Products PTY LTD 2017) was increased to 

0.0505 gallons per cubic yard, since the additional 0.5 in. of subgrade blended in for adjusting 

the cation exchange capacity (CEC), was silty. A measure of the CEC can be estimated by 

multiplying the fraction of clay in the material by the PI, with both values given in percent. 

Claycrete is suitable for material having a clay fraction greater than 10% and PI greater than 7%, 

but is less predictable for soils having a CEC greater than 400. For the cement treated aggregate 

surface course in Washington County, an application rate of 7% Type I/II Portland cement by 

dry weight was used in the 4 in. granular surface layer, based on results of Henry et al. (2005). 

For the cement treated subgrade, an application rate of 5% Type I/II Portland cement by dry 

weight was used in the top 12 in. of subgrade.  
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CHAPTER 4.    CONSTRUCTION SITE SELECTION 

Four test locations were selected and built in Iowa to cover a range of different aggregate 

sources, subgrade soil types, and the weather conditions. These tests sites are built on (1) Vail 

Avenue between 300th Street and 310th Street in Hamilton County, (2) Old 21 Road between 

480th Street and 490th Street in Cherokee County, (3) 100th Street between Pine Avenue and 

Quail Avenue in Howard County, and (4) 260th Street between Palm Avenue and Quince Avenue 

in Washington County. Sites in four different regions were selected to have similar annual 

average daily traffic (AADT), so each test section was subjected to same traffic load. The layout 

of test sections in maps along with the traffic flow maps (AADT maps per county) are provided 

in Appendix. Table 7 summarizes the location, AADT, length, and truck percentages of each test 

region.  

Table 7 Test sites selection details 

County Road Section 
Length 

(ft) 
AADT 

AADT 
Year 

Trucks 

Hamilton 
Vail Avenue between 300th Street and 
310th Street  

2,733 100 2011 High 

Cherokee 
Old 21 Road between 480th Street and 
490th Street 

5,210 70 2011 - 

Howard 
100th Street between Pine Avenue and 
Quail Avenue 

5,333 110 2013 High 

Washington 
260th Street between Palm Avenue and 
Quince Avenue 

3,936 90 2011 High 
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CHAPTER 5.    CONSTRUCTION METHODS 

This chapter presents the details of construction procedures and dates for each 

demonstration test section. A total of 31 demonstration test sections were constructed and in four 

different regions of Iowa in this study. Test sections were built with 11 different stabilization 

methods. These include six mechanical stabilization (aggregate columns, optimized gradation 

with clay slurry, ground tire rubber, recycled asphalt pavement mixed 50/50 with aggregate, 2-in. 

slag surface above 2-in. existing aggregate base, 4-in. slag surface) and five chemical stabilization (12 

in. Type I/II cement treated subgrade, 4 in. Type I/II cement treated aggregate surface course, TeamLab 

T15 Base One, SSPCo EMC Squared, Claycrete) methods. Mechanically stabilized test sections 

were built in Howard and Cherokee counties, while chemically stabilized test sections were built 

in Washington and Hamilton counties. Cement treated sections were only constructed in 

Washington County since the difficulty of construction, lack of necessary equipment and 

schedules conflicts in 2018. Additionally, two of the mechanical methods (optimized gradation 

with clay slurry and aggregate columns) were also used in Washington and Hamilton counties to 

assess the performance of these two economical methods in all regions. The pictures of each test 

section at the end of construction are attached in appendix.   
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Table 8 Types and locations of the 31 filed test sections used in this study 

  Counties 

 

Stabilization Method  Howard Cherokee Washington Hamilton 
None (control section) X X X X 

M
ec

ha
ni

ca
l  

Aggregate columns  X X X X 

Optimized gradation with clay slurry  X X X X 

Ground tire rubber (eliminated) X    
Recycled Asphalt Pavement mixed 50/50 
with aggregate  

X X   

2-in. slag surface above 2-in. existing 
aggregate base (Harsco ¾” Steel Slag) 

X X   

2-in. slag surface above 2-in. existing 
aggregate base (Phoenix 1” Steel Slag) 

X X   

4-in. slag surface (Harsco ¾” Steel Slag) X X   
4-in. slag surface (Phoenix 1” Steel Slag) X X   

C
he

m
ic

al
  

12-in. Type I/II cement treated subgrade   X  

4-in. Type I/II cement treated aggregate 
surface course  

  X X* 

TeamLab T15 Base One    X X 
SSPCo EMC Squared    X X 
Claycrete    X X 

X = Section constructed in this county. X* = Section will be constructed in this county. 

5.1 Mechanically Stabilized Sections 

The construction procedures of mechanically stabilized demonstration sections including 

optimized gradation with clay slurry, recycled asphalted pavement (RAP), two steel slag, and 

aggregate columns sections are explained in this chapter. The ground tire rubber section was 

eliminated from the list due to its lack of performance in Howard County after construction. It 

did not provide a stable roadway condition. The rubber tire chips could not bind with the 

traditional granular roadway aggregates yielding a very soft road. Figure 19 shows the schematic 

diagram of test sections built with mechanical stabilization methods in Howard and Cherokee 

counties. The 2” Phoenix steel slag section (Cherokee 5b) in Cherokee was shortened by 50 ft 

due to lack of steel slag material.  
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Figure 19 Mechanical stabilized demonstration sections in Howard and Cherokee Counties
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5.1.1 Optimized Gradation with Clay Slurry 

The optimized gradation with clay slurry sections were built via guidance provided in the 

final report of the IHRB project TR-685 and the related journal paper (Li et al. 2018). 

Accordingly, gradations of existing roadway surface materials and the potential quarry material 

were used to determine the optimum mixture proportions to calculate the tightest particle 

packing which supposedly provided the greatest strength. Based on the required quantities of 

each material were determined, a motor grader (Figure 20b) was used to rip the certain depth of 

existing material and mixed with the calculated amount virgin aggregates which was loaded on 

the roadway surface. Then the clay slurry was spread over the test section to increase its 

plasticity and aggregate binding capacity to reduce material loss. It was sprayed by a self-

unloading tanker trailer with a custom-fabricated deflector plate (Figure 20g), (the tanker used in 

Cherokee county was different shown in Figure 21). After clay slurry application, the test section 

was bladed/mixed edge to edge with 10 to 15 grader passes. The top 2 inches of the surface 

aggregates were mainly blade-mixed with 0.155 gallons per square foot apply rate of clay slurry. 

The solid content of clay slurry was at the range of 25% to 35%. The water content was 

increased due to addition of clay slurry and it was adjusted where/when necessary. After blade 

mixing of the slurry and aggregates, a light cover of fresh dry aggregate (two truckloads spread 

over a 500 ft section) were applied to minimize the sticking of the wet mixture to the compaction 

equipment. Then, the clay slurry test section was compacted using the rubber tire roller (Figure 

20f) (6 passes) and the smooth-drum vibratory roller (Figure 20d) (1 pass) for smoothening. The 

optimization spreadsheet used for calculations can be downloaded from the Project TR-685 final 

report webpage given in the references.  

 



www.manaraa.com

40 
 

 

 

Figure 20 Equipment used for mechanically stabilized sections a) disk plow harrow b) motor 
grader c) power auger d) vibratory compactor e) water truck f) rubber tire roller g) self-unloading 

tanker trailer spraying clay slurry h) dump truck 
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Figure 21 Tanker used for spraying clay slurry in Cherokee County 

The demonstration sections of optimized gradation with clay slurry method were 

constructed on August 16, 2018 in Howard County, September 27, 2018 in Cherokee County, 

August 23, 2018 in Washington County, and September 04, 2018 in Hamilton County. 

5.1.2 Ground Tire Rubber Section 

The rubber was placed in the bottom half of the layer to minimize its effect on reducing 

binding by fines in the surface layer. First used motor grader to rip and windrow existing surface 

aggregate to sides. Then dumped the ground tire rubber onto the subgrade surface and bring the 

windrowed surface aggregate back. Since there was only about 1 in. existing material can be 

used, another 75 tons fresh aggregate was added to ensure 2 in. base course. The aggregates and 

ground tire rubber were mixed by using motor grader (Figure 20b) and followed by 4 passes 

rubber tire roller (Figure 20f) and 2 passes drum roller (Figure 20d). The cover with 2 in. fresh 

aggregate and compacted using 4 passes of rubber tire roller and 4 passes of drum roller. Water 

was sprayed as needed to adjust the compaction water content to 8.5%. The ground tire rubber 

section in Howard county was finished on August 15, 2018. 
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5.1.3 RAP Sections 

RAP sections were built using conventional granular roadway construction methods and 

blade-mixed using motor graders. First, top 2 inches of the locally existing material was ripped 

and windrowed via motor grader. It should be noted that some additional materials added to the 

RAP test section in Howard County since the thickness of the existing material in Howard 

County was less than 2 inches. Then, the RAP materials were spread onto the roadway surface 

and mixed with 2 inches existing aggregate by the motor grader. In Cherokee county, a disc plow 

harrow (Figure 20a) was also found effective for mixing the RAP and aggregate together. After 

mixing the RAP and aggregates uniformly, test sections were compacted using rubber tire roller 

first (6 passes) and the smooth-drum vibratory roller (1 pass) for smoothening. The water content 

was adjusted based on the laboratory compaction test results. The RAP section in Howard county 

was constructed on August 15, 2018 while it was built on September 27, 2018 in Cherokee 

County.  

5.1.4 Steel Slag Sections 

Steel slag sections were also built using conventional methods to the procedure used to 

build RAP sections. Steel slag was spread onto the road surface first and water was sprayed as 

needed. After steel slags were spread, the road surface was shaped via motor graders as needed. 

Then, test sections were compacted using rubber tire roller (6 passes) and at least four passes of 

the smooth-drum vibratory roller for finishing. For 2 in. Harsco steel slag section and 2 in. 

Phoenix slag section, at least 2 in. thick conventional aggregate layers was put under the steel 

slag layer to avoid having high amount of steel slag. In Cherokee County, the interface between 

roadway surface and subgrade was not clear, so the conventional aggregate layer under slag was 

thicker than 2 inches. Two Phoenix steel slag sections in Howard county were constructed on 

August 14, 2018, and two Harsco steel slag sections were constructed on August 15, 2018. Both 
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Phoenix steel slags and Harsco steel slag sections in Cherokee county were constructed on 

October 25, 2018. 

5.1.5 Aggregate Columns sections 

The aggregate column section in Howard County were built by following the pattern 1 

(Figure 22) (each 100 square feet approximately have 1 column), since the roadway width was 

40 ft, which was much wider than other three test locations (Washington County, Hamilton 

County, and Cherokee County). All other 3 aggregate columns sections followed the pattern 2 

(Figure 22) (each 100 square feet approximately have 1 column). It was assumed that the void 

ratios of 0.56 and 0.25 for aggregate columns and roadway surface material, respectively (17.3 

kN/m3 [110 lb/c.f.] dry unit weight for the aggregate column material and 21.5kN/m3 [136.8 

lb/c.f.] dry unit weight for the roadway surface material). By using this assumption, 29.2% more 

voids of surface course can be provided for each 100 square feet roadway. The first step to build 

aggregate columns was to mark out the locations of the columns on a 10 ft grid as shown in 

Figure 22. Then, the columns were drilled to 7ft below the roadway surface via use of 12 inch 

diameter power auger as shown in Figure 20c. After drilling holes, columns were filled with 

clean aggregates which was poured via truck with conveyor or chute (Figure 23a). Since the 

subgrade soil was fully saturated and the groundwater table level was high (4ft below of ground 

surface) in Hamilton County, the hole collapse soon after the drilling and it was filled by clean 

aggregate right after the drilling.  Spoil was removed with small skid-steer or other loader. After 

columns installed, the maintenance aggregate was spread when needed. The position of columns 

could be adjusted slightly if necessary when encountering utility lines. The demonstration 

sections of aggregate columns were constructed on August 15-16, 2018 in Howard county, 

September 27-28, 2018 in Cherokee county, August 21-23, 2018 in Washington county, and 

September 04-06, 2018 in Hamilton county. 
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Figure 22 Aggregate columns layout pattern 

 

Figure 23 (a) Fill column with clean aggregate by using dump truck with chute and (b) hole 
made by power auger  

5.2 Chemically Stabilized Sections 

The construction procedures of chemically stabilized test sections are described in this 

chapter. These sections include cement treated surface-subgrade, cement treated surface course, 

and three liquid stabilizers (TeamLab T15 Base One, SSPCo EMC Squared, Claycrete). The 

schematic diagram of the chemically stabilized demonstration sections in Washington and 

Hamilton counties are shown in Figure 24. 
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Figure 24 Chemically stabilized demonstration sections in Hamilton and Washington counties 
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5.2.1 12 inches Type I/II Cement Treated Subgrade Test Section 

The cement treated 12 in. subgrade section was constructed by GeoMax, Inc. Before the 

cement application, the existing surface material was ripped and windrowed or stockpiled to 

stabilize the 304.8 mm (12 in.) subgrade. Then, the Portland cement (Type I/II) was spread on 

the road using a spreader truck (Figure 25e) and the subgrade soil was dry tilled with a reclaimer 

(Figure 25c) up to 304.8 mm (12 in.) deep. After tilling, the cement-subgrade soil mixture was 

compacted with padfoot drum roller with vibration and revised roller compactor without 

vibration (Figure 25d) (1 pass for each). Then all area was tilled again with spraying water at 

same time, and re-compacted immediately with vibratory padfoot roller compaction and reverse 

roller compactor without vibration. At least 12 passes were done during compaction process. 

Afterwards the cement-subgrade soil mixture surface was smoothened with drum roller (Figure 

20d) the windrowed existing material was brought back to the roadway with motor grader. 

Finished with rubber tire roller (6 passes) and smooth roller compaction (1 pass with vibration 

and 1 pass without vibration). The demonstration section in Washington County was constructed 

on August 30, 2018, and the road was closed overnight. 

5.2.2 4 inches Type I/II Cement Treated Aggregate Surface Course Test Section 

The new aggregate was spread previously to ensure the thickness of surface course is 

101.6 mm (4 in.). The GeoMax spreader truck was used to spread the cement uniformly on top of 

the aggregate road surface. Then, the cement and granular aggregate were mixed with the 

RoadHog which was calibrated to mix 101.6 mm (4 in.) below the roadway surface. The water 

truck accompanied with RoadHog to adjust the needed water content (7.5% optimal). After 

proper mixing, test sections were compacted with at least 4 passes using rubber tire roller 

followed by the vibratory roller for surface smoothening. The motor grader was also used during 

this period to shape the roadway surface. Finished by 1 pass drum roller without vibration. The 
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demonstration section in Washington County was constructed on August 30, 2018, and the road 

was closed over a night. 

5.2.3 SSPCo EMC Squared Stabilized Test Section 

All of the liquid chemical stabilizers were mixed using a 60-in. wide RoadHog (Figure 

25a) mounted on a Caterpillar 938M Wheel Loader and attached to a water truck (Figure 25b) by 

a hose system. For the EMC Squared test section, 152.4 mm (6 in.) subgrade was also treated. 

The existing surface course in Washington and Hamilton counties were slightly greater than 

101.6 mm (4 in.), which was the targeted treatment thickness of surface course. The motor 

grader was used to windrow the surface course material to sides and RoadHog was used to till 

152.4 mm (6 in.) subgrade afterwards (the treated subgrade depth in Hamilton county is 101.6 

mm since boulder existing damages RoadHog and slows work). The 60% of EMC Squared 

liquid stabilizer was diluted in water truck to stabilize the subgrade. Then, the diluted EMC 

Squared solution was injected into the tilled subgrade soil (tilling achieved with RoadHog). The 

water content was adjusted as needed during construction (22% optimal). After uniform mixing 

of EMC Squared solution with subgrade soil, it was compacted using rubber tire roller (6 passes) 

followed by at least 4 passes of vibratory roller. Then, the windrowed surface material was 

moved back on the treated subgrade soil surface which was tilled again via RoadHog to 101.6 

mm (4 in.) depth and mixed with the remaining (40%) EMC Squared solution. After uniform 

mixing process, the test section was compacted using rubber tire roller (6 passes) and vibratory 

roller (1 pass with vibration and 6 passes without vibration), and the roadway surface was shaped 

via motor grader. Since the three liquid stabilizers could have low viscosity in cold weather, it is 

important to get a smooth finished surface by using the smooth drum roller and tight blading.  
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Figure 25 Equipment used for chemically stabilized sections a) RoadHog reclaimer b) water 
truck with chemical stabilizer added to tank connected to RoadHog c) road reclaimer d) 

sheepsfoot vibratory compactor e) powder spreader truck 
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5.2.4 TeamLab T15 Base One (Base One) and Claycrete Test Sections 

Both Base One and Claycrete need specific amount if fines content (particles <0.074 mm) 

to be effective stabilizers for granular roadway applications, they were mixed with 12.7 mm (0.5 

in.) top subgrade soil. The RoadHog was calibrated down to 12.7 (0.5 in.) deeper than subgrade 

surface to achieve the most efficient treatment method for these stabilizers. During tilling, the 

RoadHog also incorporated these stabilizers into the subgrade and surface aggregate mixture. 

Then, test sections were compacted using rubber tire roller and vibratory roller, and shaped via 

motor grader. There is a little difference of construction procedures of Base One section and 

Claycrete section. For Base One, construction finished by rubber tire roller and then final motor 

grader blade. For Claycrete, finished by motor grader trim cut and then final roll with drum roller 

but no vibration. All three liquid chemical stabilizer sections were constructed on the same day 

on September 06, 2018 on Hamilton county and on August 30, 2018 on Washington county.  

5.3 Control Sections 

For all control sections in four counties, the existing road surfaces without any treatment 

were used as control sections. The maintenance rock was spread during the days of test sections 

construction to ensure 4 inches surface course thickness.   



www.manaraa.com

50 
 

 

CHAPTER 6.    RESULTS AND DISCUSSION 

This chapter presents the results of field and laboratory tests conducted on existing 

roadway materials prior to stabilization and demonstration sections after they were built along 

with control sections.  

6.1 In-situ Tests and Laboratory Tests Conducted Prior to Construction 

Prior field and laboratory tests were conducted to evaluate the in-situ soil and existing 

granular aggregate materials conditions at construction sites. Dynamic cone penetrometer (DCP) 

and light weight deflectometer (LWD) tests were performed to determine the penetration 

resistance profiles and composite elastic modulus of the existing roadways. Unconfined 

compressive strength (UCS), California bearing ratio (CBR), and slaking tests were performed to 

evaluate the impact of mixing locally available granular aggregate materials with clay slurry.    

6.1.1 Results of DCP and LWD Tests 

The DCP and LWD tests were performed on all four sites on August, 2017. For each site, 

five DCP tests were conducted to evaluate the in-situ DCP related CBR of surface course and the 

underlying subgrade to a depth of about 900 mm (36 in.). The nominal thickness of the surface 

course in four sites was also estimated based on the DCP data. The pre-construction DCP results 

for Cherokee County and Howard County are shown in Figure 26, which only include 

mechanical stabilization methods. The pre-construction DCP results of chemically stabilized 

counties, Washington County and Hamilton County are shown in Figure 27. In Cherokee county, 

there was no obvious interface between surface course and subgrade since the soil was gradually 

changing to subgrade form course aggregate. In Howard County, the surface course thickness 

was calculated to be in the range of 50.8 mm to 101.6 mm (2.0 to 4.0 in) (Figure 26).  
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(a)                                      (b)                              (c) 

Figure 26 Pre-construction DCP-CBR Results of Cherokee County and Howard County: a) 
cumulative blows b) DCPI and c) DCP-CBR 

The thickness of surface course in Hamilton County was calculated to be in the range of 

58.4 mm to 88.9 mm (2.3 to 3.5 in.). In Washington County, the surface course thickness was 

calculated to be around 101.6 mm (4.0 in). The detailed calculated surface course thickness and 

DCP-CBR values for the both surface aggregate layer (DCP-CBRAGG) and subgrade (DCP-

CBRSG) are summarized in Table 9. The surface course in Cherokee was assumed as 101.6 mm 

(4.0 in.), which is the design thickness used for demonstration sections construction. The DCP-

CBRAGG in Howard, Hamilton, Washington counties are rated as excellent according to the 

relative CBR rating from Iowa SUDAS (2015). The SUDAS relative rating of Cherokee county 
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course surface is good to very good since the result of test point 3 has large variation. The 

SUDAS relative rating of subgrade in Cherokee and Washington counties are very good. The 

SUDAS relative rating of subgrade in Howard and Hamilton counties are fair to good. The pre-

construction field condition during the in-situ testing for all sites were relatively dry and stable 

with no significant rutting. Figure 28 shows the DCP related CBR of surface course and 

subgrade of four main test sections. 

 

(a)                                      (b)                                     (c) 

Figure 27 Pre-construction DCP-CBR results of Hamilton County and Washington County: a) 
cumulative blows b) DCPI and c) DCP-CBR   
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Table 9 Summary of pre-construction DCP-CBR results of four main test sections 

County 
Name 

Test 
Point 

Thickness of 
Surface Course 

(mm) 

Thickness of 
Surface Course 

(in.) 

DCP-
CBRAGG (%) 

/ Ratinga 

Ave. DCP-
CBRSG (%) / 

Ratingb 

Cherokee 

1 101.6 4.0 31.2 / G 61.5 / >VG 
2 101.6 4.0 204.8/ E 59.7 / >VG 
3 101.6 4.0 40.2 / G 20.3 / VG 
4 101.6 4.0 35.7 / G 5.2 / P-F 
5 101.6 4.0 41.4 / G 29.1 / VG 

Average 101.6 4.0 70.7 / VG 35.2 / VG 
Coefficient of 

Variation 
0.0 % 0.0 % 106.3 % 70.4 % 

Howard  

1 78.0 3.1 122.5 / E 29.2 / VG 
2 Refusal - - - 
3 58.9 2.3 39.0 / G 11.1 / F-G 
4 114.3 4.5 290.7 / E 17.1 / F-G 
5 Refusal - - - 

Average 83.7 3.3 150.7 / E 19.1 / F-G 
Coefficient of 

Variation 
33.6 % 33.6 % 85.1 % 48.2 % 

Hamilton 

1 86.89 3.4 279.9 / E 14.4 / F-G 
2 148.8 5.9 456.9 / E 19.8 / F-G 
3 56.9 2.2 151.1 / E 10.1 / F-G 
4 69.1 2.7 44.7 / G 28.0 / VG 
5 56.9 2.24 159.8 / E 15.4 / F-G 

Average 83.7 3.3 218.5 / E 17.5 / F-G 
Coefficient of 

Variation 
45.9 % 45.9 % 71.9 % 38.7 % 

Washington 

1 140.0 5.5 290.9 / E 14.2 / F-G 
2 9450 3.7 132.5 / E 34.1 / >VG 
3 98.8 3.9 38.0 / G 40.1 / >VG 
4 95.0 3.7 420.1 / E 32.4 / >VG 
5 101.1 4.0 140.5 / E 40.2 / >VG 

Average 106.0 4.2 204.4 / E 32.2 / > VG 
Coefficient of 

Variation 
18.1 % 18.1 % 73.8 % 33.2 % 

a SUDAS relative rating of supporting strengths as function of CBR for subbase: E=Excellent, 
VG=Very Good, G=Good, <G=below Good; b SUDAS relative rating of supporting strengths as 
function of CBR for subgrade: >VG=greater than Very Good, VG=Very Good, F-G=Fair-good, 
P-F=Poor-fair, VP=Very Poor.  
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Figure 28 Pre-construction DCP-CBR results 

LWD tests were also conducted on all four main test sections to determine their in-situ 

composite elastic modulus (ELWD) as described in Section 3.2.4 above. The LWD test results are 

shown in Figure 29 and the average values of ELWD are shown in Table 10.  

Table 10 Summary of pre-construction LWD test results 

  Cherokee Howard Washington Hamilton 
Average ELWD (MPa) 75.1 84.7 68.3 76.1 
Coefficient of Variation 20.2 21.3 24.5 15.2 
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Figure 29 Pre-construction LWD results 

6.1.2 Laboratory CBR and UCS Tests for the Clay Slurry Mixtures 

To evaluate the impact of mixing clay slurry, CBR tests were conducted on the granular 

surface materials collected from the site in the Washington County that was mixed with 7% clay 

slurry solid by dry weight. 7% was selected for testing since it was expected that clay slurry was 

going to behave similar to standard Portland cement. It is very well known that recommended 

cement content for soil stabilization ranges from 2% to 10% by weight (Mahedi et al. 2018). 

CBR specimens were prepared at their corresponding optimum moisture content (OMC) per the 

laboratory standard Proctor tests results and soaked for more than 24 hours for saturation. The 

shear stress versus penetration depth for the CBR tests on the surface aggregate-7% clay slurry 

mixture is shown in Figure 30. Under 2 mm penetration, the penetration resistance of granular 
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aggregate-clay slurry mixture was slightly lower, while at high penetration, the penetration 

resistance of non-treated surface aggregate material was 3 times higher than that of the surface 

aggregate-7% clay slurry mixture.   
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Figure 30 Uncorrected stress on piston versus penetration depth from CBR tests Washington 
surface aggregate only and 7% clay slurry mixing 

For each specimen, the laboratory CBR value, dry unit weight, and moisture content 

before and after CBR testing are summarized in Table 11. With mixing the clay slurry, the CBR 

value of granular surface aggregates decreased considerably.  

Table 11 Laboratory CBR test results for soaked specimens 

Specimen 
Dry Unit 
Weight 
(lb/ft3) 

Dry Unit Weight 
(KN/m3) 

As Compaction 
w (%) 

Lab CBR 
(%)/Ratinga 

Washington Surface 
Aggregate 

141.6 22.2 7.1 28.0/ <G 

7% Clay Slurry 
Mixing 

134.8 21.2 7.7 11.0/ <G 

a SUDAS relative rating of supporting strengths as function of CBR for subbase: E=Excellent, 
VG=Very Good, G=Good, <G=below Good; 
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UCS tests were performed to 2 by 2 specimens of Washington surface aggregate only and 

surface aggregate-7% clay slurry mixtures to evaluate the impact of clay slurry on the shear 

strength. These specimens consist minus U.S. sieve No. 40 fractions of the materials and 

compacted at optimum moisture content determined by standard laboratory Proctor test (Section 

3.1.3.1). Specimens were tested in both wet condition (as-compacted) and dry condition (oven 

dried). The UCS of Washington surface aggregate had the average value of 0.10 MPa in wet 

condition and 2.24 MPa in dry condition, while the average UCS of the surface aggregate-7% 

clay slurry mixture was 0.23 MPa in wet condition and 5.86 MPa in dry condition (Figure 31). 

Results showed that the unconfined compressive strength of surface aggregate-7% clay slurry 

mixtures specimens increased 130% in wet condition and 160% in dry condition. Slaking tests 

were also conducted to 2 by 2 specimens of Washington surface aggregate only and 7 surface 

aggregate-7% clay slurry mixtures, and the results are summarized in Table 12. It was observed 

that surface aggregate-7% clay slurry mixtures had slower dissolution rate indicating that adding 

clay slurry increased the resistance of the local aggregate materials against dissolution.   

Table 12 Slaking test results for Washington surface aggregate and 7% clay slurry mixture 

Water Temperature 
(°C) 

23.5 23.1 23.1 22.6 

Specimen Slaking Time (min) 

Washington Surface 
Aggregate 

11.0 12.0 11.0 10.0 

7% Clay Slurry 
Mixing 

21.0 20.0 24.0 20.0 
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Figure 31 UCS test results for Washington surface aggregate and 7% clay slurry mixing 

6.2 In-situ Tests and Laboratory Tests Conducted after Construction 

Field and laboratory tests were conducted to evaluate the in-situ performance of test 

sections after construction. Dynamic cone penetrometer (DCP), light weight deflectometer 

(LWD), and falling weight deflectometer (FWD) tests were conducted on each test section to 

determine their strength and elastic modulus. Nuclear density gauge tests were performed to 

determine the in-situ density and moisture content of each section. The dustometer tests were 

also conducted to measure the fugitive dust emissions of the test sections. In addition, visual 

surveys were performed to determine and observe the failure on each test section. In terms of 

laboratory tests, sieve analysis, hydrometer tests, and Atterberg limits test were performed on 

both granular surface aggregate and subgrade soils collected from test sections during 

construction to monitor the particle size distribution and soil index properties.   
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6.2.1 DCP Test Results 

6.2.1.1 DCP Test Results for the Cherokee County Test Sections 

The DCP tests in Cherokee County were conducted on November 08, 2018. Test sections 

included RAP, optimized gradation with clay slurry, and aggregate columns and all of which 

were constructed on September 27, 2018. On the other hand, the four steel slag sections were 

constructed on October 25, 2018 and they were set for 14 days before DCP tests were performed. 

The cumulative blows, DCPI, and DCP-CBR values versus depth for all sections of Cherokee 

County are shown in Figures 32-34. The DCP results could not identify clear interface between 

treated surface layer and subgrade layer. The surface thickness was set as 101 mm (4 in.) for 

average DCP-CBR analysis since there was no clear trend showed a clear difference between 

surface and subgrade layers as indicated previously.  The trend of DCP-CBR of the RAP section 

and the four steel slag sections indicated that the 0 mm depth to 50 mm (2 in.) depth of surface 

layer were loose and had relatively low CBR value. The surface layer in the control section and 

the aggregate column section had relatively high uniformly DCP-CBR since the existing surface 

were not disturbed during the construction. The optimized gradation with clay slurry surface 

layer also had high DCP-CBR values throughout the section. The DCP-CBR with SUDAS rating 

of analyzed surface layer and subgrade layer, in-situ surface dry density, and in-situ moisture 

content are summarized in Table 13.  



www.manaraa.com

60 
 

 

 
(a)                                      (b)                                     (c) 

Figure 32 DCP test results for aggregate columns and optimized gradation w/ clay slurry sections 
in Cherokee County: a) cumulative blows b) DCPI and c) DCP-CBR 
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(a)                                      (b)                                     (c) 

Figure 33 DCP test results for RAP, 4” Harsco slag, and 4” Harsco slag section in Cherokee 
county: a) cumulative blows b) DCPI and c) DCP-CBR 
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(a)                                      (b)                                     (c) 

Figure 34 DCP test results for 4" Phoenix slag, 2" Phoenix slag, and control sections in Cherokee 
County: a) cumulative blows b) DCPI and c) DCP-CBR 
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Table 13 Summary of Cherokee demonstration sections: (1) DCP-CBR, (2) in-situ dry unit weight, and (3) in-situ moisture content 

 
Section Name 

Thickness of 
Surface 
Course  

AVG 
Thickness 

DCP 
CBRAGG 

AVG 
DCP-

CBRAGG/ 
Ratinga 

DCP-
CBRSG 

AVG 
DCP-

CBRSG/ 
Ratingb 

In-situ Dry Unit 
Weight 

In-situ 
Moisture 
Content 

  (mm) (in.) (mm) (in.) (%) (%) (%) (%) (lb/ft3) (KN/m3)  (%) AVG 

(1) Aggregate 
Columns 

101.0 4.0 

101.0 4.0 

76.3 

72.4/ VG 

17.6 

19.9/ F-G 

131.9 20.7 9.6 

9.6 
101.0 4.0 48.7 20.6 140.2 22.0 9.6 
101.0 4.0 84.9 23.1 128.5 20.2 9.8 
101.0 4.0 59.2 20.1 130.6 20.5 10.1 
101.0 4.0 93.0 18.0 132.0 20.7 8.9 

(2) Optimized 
Gradation w/ 
Pattison Clay 

Slurry 

101.0 4.0 

101.0 4.0 

125.7 

114.4/ E 

24.8 

22.5/ VG 

128.6 20.2 8.9 

7.1 
101.0 4.0 99.7 17.1 137.5 21.6 5.7 
101.0 4.0 141.1 20.3 135.0 21.2 7.1 
101.0 4.0 106.8 28.2 137.5 21.6 7.0 
101.0 4.0 98.8 22.2 132.6 20.8 6.7 

(3) RAP 

101.0 4.0 

101.0 4.0 

35.7 

28.9/ <G 

19.5 

16.4/ F-G 

116.7 18.3 9.8 

9.8 
101.0 4.0 27.0 20.9 113.4 17.8 9.1 
101.0 4.0 21.1 19.5 113.8 17.9 9.9 
101.0 4.0 26.9 11.1 109.0 17.1 10.8 
101.0 4.0 33.8 10.8 115.8 18.2 9.3 

(4a) 2" Harsco 
Slag 

101.0 4.0 

101.0 4.0 

35.6 

40.5/ G 

27.0 

21.1/ VG 

135.7 21.3 6.9 

6.8 
101.0 4.0 44.4 22.1 144.7 22.7 7.0 
101.0 4.0 42.1 26.8 140.0 22.0 6.9 
101.0 4.0 33.4 14.7 142.5 22.4 6.2 
101.0 4.0 46.8 15.1 146.0 22.9 7.0 
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Table 13. (continued) 

 
Thickness of 

Surface 
Course  

AVG 
Thickness 

DCP 
CBRAGG 

AVG 
DCP-

CBRAGG/ 
Ratinga 

DCP-
CBRSG 

AVG 
DCP-

CBRSG/ 
Ratingb 

In-situ Dry Unit 
Weight 

In-situ 
Moisture 
Content 

Section Name (mm) (in.) (mm) (in.) (%) (%) (%) (%) (lb/ft3) (KN/m3) (%) AVG 

(4b) 4" Harsco 
Slag 

101.0 4.0 

101.0 4.0 

17.6 

25.6/ <G 

10.7 

13.7/ F-G 

140.6 22.1 6.5 

6.1 
101.0 4.0 27.9 16.7 137.5 21.6 6.1 
101.0 4.0 26.8 13.7 141.9 22.3 6.1 
101.0 4.0 22.6 14.4 144.9 22.8 6.1 
101.0 4.0 33.3 12.9 141.0 22.1 5.7 

(5a) 4" 
Phoenix Slag 

101.0 4.0 

101.0 4.0 

31.6 

24.7/ <G 

15.9 

19.8/ F-G 

164.7 25.9 3.6 

3.6 
101.0 4.0 23.4 14.1 165.0 25.9 3.6 
101.0 4.0 17.4 20.6 156.4 24.6 3.5 
101.0 4.0 15.4 24.0 154.0 24.2 3.5 
101.0 4.0 35.8 24.3 156.4 24.6 3.8 

(5b) 2" 
Phoenix Slag 

101.0 4.0 

101.0 4.0 

44.8 

34.1/ G 

23.0 

19.7/ F-G 

157.8 24.8 4.5 

5.7 
101.0 4.0 38.6 23.8 159.0 25.0 4.8 
101.0 4.0 23.7 21.0 154.6 24.3 4.6 
101.0 4.0 29.1 11.2 144.4 22.7 5.4 

(6) Control 

101.0 4.0 

101.0 4.0 

30.3 

23.6/ <G 

15.2 

10.6/ F-G 

127.1 20.0 9.4 

10.2 
101.0 4.0 26.3 15.0 130.3 20.5 9.9 
101.0 4.0 20.5 10.0 129.3 20.3 10.2 
101.0 4.0 13.9 5.1 131.4 20.6 10.4 
101.0 4.0 26.9 7.6 133.2 20.9 10.1 

a SUDAS relative rating of supporting strengths as function of CBR for subbase: E=Excellent, VG=Very Good, G=Good, <G=below 
Good; b SUDAS relative rating of supporting strengths as function of CBR for subgrade: >VG=greater than Very Good, VG=Very 
Good, F-G=Fair-good, P-F=Poor-fair, VP=Very Poor.  
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Figure 35 Cherokee demonstration sections: (1) DCP-CBR, (2) in-situ dry unit weight, and (3) 
in-situ moisture content 

The optimized gradation with clay slurry section had the highest average DCP-CBRAGG 

value with the excellent SUDAS relative rating (SUDAS 2015). The DCP-CBRAGG of this 

section ranged from 98.8% to 141.1% with the 101 mm (4 in.) average thickness of surface 

course. The in-situ dry unit weight of the optimized gradation with clay slurry section was 

similar to the control section. The aggregate columns section had the similar value of in-situ dry 

unit weight and moisture content to control section, but the DCP-CBRAGG was higher than 

control section with the values in the range 48.7% to 93.0. The steel slag sections had higher in-

situ dry unit weight since the steel slag materials had higher specific gravities than other 

geomaterials used in this study, and lower in-situ moisture content due to lower amount of fines 

content. The DCP-CBRAGG of 2” Harsco steel slag section and 2” Phoenix steel slag section have 

the SUDAS rating of good. But the SUDAS relative rating of average CBR-DCPAGG of other two 
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4” steel slag sections and RAP section were below good. The possible explanation for the status 

for these steel slag sections and the RAP section was that the surface layer was loose and the 

materials had not been bonded well yet. The CBR-DCPSG for all demonstration sections were 

higher than the subgrade of the control section. The average CBR-DCPSG for optimized gradation 

with clay slurry section, 2” Harsco steel slag section, aggregate columns section and Phoenix 

steel slag sections had relative higher values than those of others.  

6.2.1.2 DCP Test Results of Howard Demonstration Sections 

The DCP tests in Howard County were conducted on October 23, 2018. The construction 

of test section in Howard County was completed on August 16, 2018. The cumulative blows, 

DCPI, and DCP-CBR values versus depth for all sections of Howard County are shown in 

Figures 36-38. The DCP results of Howard test sections could identify clear interface between 

treated surface and subgrade around 101mm (4 in.). The surface course thickness of 101 mm (4 

in.) was used to calculate the weight average DCP-CBR. The surface course thickness of several 

DCP tests were adjusted according to a clear interface shown in different depth. The DCP-CBR 

plot of control section shows that the surface in depth between 0 mm to 50 mm (2 in.) has 

relatively low CBR value. The possible reason is that the top loose part of surface layer is the 

newly spread maintenance aggregate, which is not compacted. The bottom part of surface layer 

close to 101 mm (4 in.) depth is denser and stiffer because it was not disturbed for construction 

and it was compacted by passing traffic. The DCP-CBR with SUDAS relative rating of analyzed 

surface layer as well as subgrade layer, in-situ surface dry density, and in-situ moisture content 

are summarized in Table 14.  
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(a)                                      (b)                                     (c) 

Figure 36 DCP test results for optimized gradation with clay slurry section, control section, and 
RAP section in Howard County: a) cumulative blows b) DCPI and c) DCP-CBR 
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(a)                                      (b)                                     (c) 

Figure 37 DCP test results for 2” Harsco slag section, 4” Harsco steel slag section, and 4” 
Phoenix steel slag section in Howard County: a) cumulative blows b) DCPI and c) DCP-CBR 
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(a)                                      (b)                                     (c) 

Figure 38 DCP test results for 2” Phoenix steel slag section and aggregate columns section in 
Howard County: a) cumulative blows b) DCPI and c) DCP-CBR
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Table 14 Summary of Howard demonstration sections: (1) DCP-CBR, (2) in-situ dry unit weight, and (3) in-situ moisture content 

 
Section Name 

Thickness of 
Surface 
Course  

AVG 
Thickness 

DCP 
CBRAGG 

AVG 
DCP-

CBRAGG/ 
Ratinga 

DCP-
CBRSG 

AVG 
DCP-

CBRSG/ 
Ratingb 

In-situ Dry Unit 
Weight 

In-situ 
Moisture 
Content 

  (mm) (in.) (mm) (in.) (%) (%) (%) (%) (lb/ft3) (KN/m3)  (%) AVG 

(1) Optimized 
Gradation w/ 
Pattison Clay 

Slurry 

101.0 4.0 

101.0 4.0 

56.0 

66.6/ VG 

9.1 

12.0/ F-G 

127.7 20.1 9.0 

7.4 
101.0 4.0 73.5 12.4 125.5 19.7 7.7 
101.0 4.0 62.9 10.0 124.8 19.6 6.8 
101.0 4.0 69.1 15.4 124.7 19.6 6.7 
101.0 4.0 71.6 13.0 126.5 19.9 6.6 

(2) Control 

107.0 4.2 

108.8 4.3 

190.1 

116.7/ E 

15.8 

14.8/ F-G 

133.8 21.0 7.7 

7.8 
134.0 5.3 105.1 15.6 135.4 21.3 7.2 
101.0 4.0 102.0 15.0 137.3 21.6 7.1 
101.0 4.0 81.6 16.2 136.4 21.4 7.3 
101.0 4.0 104.7 11.4 119.1 18.7 9.6 

(4) RAP 

101.0 4.0 

101.0 4.0 

51.3 

39.0/ G 

16.0 

12.7/ F-G 

116.8 18.3 10.5 

9.2 
101.0 4.0 25.2 10.2 121.6 19.1 9.6 
101.0 4.0 31.0 8.3 125.1 19.7 8.0 
101.0 4.0 52.5 12.1 122.7 19.3 9.5 
101.0 4.0 35.3 16.8 125.1 19.7 8.3 

(5a) 2" 
Harsco Slag 

101.0 4.0 

113.2 4.5 

47.8 

143.4/ E 

8.6 

27.6/ VG 

146.4 23.0 6.9 

6.3 
101.0 4.0 131.4 39.4 139.6 21.9 6.5 
101.0 4.0 108.3 19.2 148.6 23.3 6.3 
119.0 4.7 154.5 42.4 149.0 23.4 5.9 
144.0 5.7 275.2 28.3 138.6 21.8 5.7 
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Table 14. (continued) 

 
Thickness of 

Surface 
Course  

AVG 
Thickness 

DCP 
CBR 
AGG 

AVG 
DCP-CBR 

AGG/ 
Ratinga 

DCP-
CBR SG 

AVG 
DCP-CBR 

SG/ 
Ratingb 

In-situ Dry Unit 
Weight 

In-situ 
Moisture 
Content 

Section Name (mm) (in.) (mm) (in.) (%) (%) (%) (%) (lb/ft3) (KN/m3) (%) AVG 

(5b) 4" Harsco 
Slag 

101.0 4.0 

101.0 4.9 

209.0 

330.1/ E 

28.5 

25.1/ VG 

156.5 24.6 5.5 

5.3 
101.0 5.3 254.7 21.3 151.0 23.7 5.7 
101.0 6.3 387.3 33.0 148.8 23.4 4.6 
101.0 3.9 469.4 17.6 156.4 24.6 5.3 

(6a) 4" 
Phoenix Slag 

101.0 4.0 

101.0 4.0 

76.9 

77.1/ VG 

12.1 

14.3/ F-G 

169.4 26.6 4.5 

4.3 
101.0 4.0 131.8 13.8 168.1 26.4 4.4 
101.0 4.0 63.1 16.2 163.5 25.7 4.0 
101.0 4.0 48.3 14.1 168.2 26.4 4.4 
101.0 4.0 65.5 15.2 170.4 26.8 4.2 

(6b) 2" 
Phoenix Slag 

101.0 4.0 

101.0 4.0 

87.8 

95.9/ E 

10.2 

16.3/ F-G 

165.2 26.0 6.3 

6.9 
101.0 4.0 122.7 17.5 170.1 26.7 5.4 
101.0 4.0 138.9 15.3 161.2 25.3 4.5 
101.0 4.0 41.3 10.8 172.5 27.1 6.0 
101.0 4.0 89.0 28.0 167.0 26.2 7.0 

(7) Aggregate 
Columns 

101.0 4.0 

101.0 4.0 

25.0 

20.3/ <G 

7.8 

5.1/ P-F 

121.1 19.0 12.2 

12.2 
101.0 4.0 28.1 4.8 126.9 19.9 11.0 
101.0 4.0 11.2 4.4 110.0 17.3 15.1 
101.0 4.0 13.3 5.7 114.6 18.0 15.2 
101.0 4.0 24.2 2.9 125.0 19.6 7.3 

a SUDAS relative rating of supporting strengths as function of CBR for subbase: E=Excellent, VG=Very Good, G=Good, <G=below 
Good; b SUDAS relative rating of supporting strengths as function of CBR for subgrade: >VG=greater than Very Good, VG=Very 
Good, F-G=Fair-good, P-F=Poor-fair, VP=Very Poor.
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Figure 39 Howard demonstration sections: (1) DCP-CBR, (2) in-situ dry unit weight, and (3) in-
situ moisture content 

Similar to the Cherokee county, the in-situ dry unit weight of slag sections is higher than 

other sections and the in-situ moisture content is lower than other sections. The average DCP-

CBRAGG of 4” Harsco slag section is the highest (330.1%/E), which is 1.8 times higher than 

control section (116.7%/E). The 2” Harsco slag section average DCP-CBRAGG (143.3/E) is 

slightly higher than control section. The average DCP-CBRAGG of Phoenix slag sections (2”- 

95.9%/E; 4”- 77.1%/VG) and optimized gradation with clay slurry (66.6%/VG) section are lower 

than control section, but they can still have excellent or very good SUDAS relative rating. The 

RAP section has good DCP-CBRAGG (39.0%/G) and the aggregate columns section has SUDAS 

relative rating below good (20.3%/G). Although the DCP-CBR plot indicates the top of control 

section surface layer is loose, the control section can still have excellent average DCP-CBRAGG. 
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Since top part of the surface layer in control section is unstable, the aggregates could lose faster 

than other sections.  

6.2.1.3 DCP Test Results of Washington Demonstration Sections 

The DCP tests in Washington County were conducted on November 06, 2018. The 

construction of test sections in Washington County was completed on August 30, 2018. The 

cumulative blows, DCPI, and DCP-CBR values versus depth for these sections are shown in 

Figures 40-42. The designed treatment surface thickness of test sections in Washington County is 

101 mm (4 in.), which is also the surface layer thickness used for analysis. For the cement 12” 

treated subgrade section, there is no treatment to the surface course. The EMC Squared section 

has 101 mm (4 in.) surface course treated and 152 mm (6 in.) subgrade treated under the surface. 

Obvious trend changes at 101 mm (4 in.) depth can be easily found in the DCP-CBR plot of 

cement treated 12” subgrade section and cement treated 4” surface section. For all the other 

sections, the trend changes are not clear as cement sections. There is a suddenly increase in the 

DCP-CBR plot of EMC Squared section. The possible reason is that a dense, stiff but thin layer 

exists in subgrade at 500 mm (20 in.) depth. This also happened in DCP-CBR plot of Base One 

section, which is connected with ECM Squared section. The DCP-CBR with SUDAS relative 

rating of analyzed surface layer as well as subgrade layer, in-situ surface dry density, and in-situ 

moisture content are summarized in Table 15.  
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(a)                                      (b)                                     (c) 

Figure 40 DCP test results for optimized gradation with clay slurry section, control section, and 
cement 12" subgrade section in Washington County: a) cumulative blows b) DCPI and c) DCP-

CBR 
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(a)                                      (b)                                     (c) 

Figure 41 DCP test results for cement 4" surface section, Base One section, and EMC Squared 
section in Washington County: a) cumulative blows b) DCPI and c) DCP-CBR 
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(a)                                      (b)                                     (c) 

Figure 42 DCP test results for Claycrete section, and aggregate columns section in Washington 
County: a) cumulative blows b) DCPI and c) DCP-CBR 
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Table 15 Summary of Washington demonstration sections: (1) DCP-CBR, (2) in-situ dry unit weight, and (3) in-situ moisture content 

 
Section Name 

Thickness of 
Surface 
Course  

AVG 
Thickness 

DCP 
CBRAGG 

AVG 
DCP-

CBRAGG/ 
Ratinga 

DCP-
CBRSG 

AVG 
DCP-

CBRSG/ 
Ratingb 

In-situ Dry Unit 
Weight 

In-situ 
Moisture 

Content, % 

  (mm) (in.) (mm) (in.) (%) (%) (%) (%) (lb/ft3) (KN/m3) (%)  AVG 

(1) Optimized 
Gradation w/ 
Pattison Clay 

Slurry 

101.0 4.0 

101.0 4.0 

29.1 

29.7/ <G 

9.7 

9.2/ P-F 

136.1 21.4 3.7 

6.0 
101.0 4.0 22.2 8.4 135.8 21.3 7.5 
101.0 4.0 38.4 10.8 139.4 21.9 5.6 
101.0 4.0 30.3 8.1 137.1 21.5 6.9 
101.0 4.0 28.2 9.1 138.1 21.7 6.4 

(2) Control 

101.0 4.0 

101.0 4.0 

29.5 

33.9/ G 

8.7 

10.5/ F-G 

130.0 20.4 9.8 

7.9 
101.0 4.0 39.6 9.8 132.3 20.8 8.4 
101.0 4.0 26.6 10.5 128.9 20.2 5.4 
101.0 4.0 31.3 11.2 120.5 18.9 8.3 
101.0 4.0 42.5 12.3 130.5 20.5 7.7 

(3) Cement 
Treated 12" 
Subgrade 

101.0 4.0 

101.0 4.0 

27.2 

37.9/ G 

39.5 

34.4/ >VG 

124.7 19.6 9.2 

8.3 
101.0 4.0 21.1 36.9 126.7 19.9 7.2 
101.0 4.0 38.1 25.9 125.9 19.8 9.6 
101.0 4.0 63.0 37.9 130.8 20.5 8.3 
101.0 4.0 39.9 32.1 125.4 19.7 7.2 

(4) Cement 
Treated 4" 

Surface 

101.0 4.0 

101.0 4.0 

166.6 

169.9/ E 

13.4 

14.6/ F-G 

129.1 20.3 9.3 

9.2 
101.0 4.0 201.2 15.7 134.3 21.1 8.7 
101.0 4.0 114.6 14.1 131.9 20.7 8.9 
101.0 4.0 120.3 15.5 132.5 20.8 8.9 
101.0 4.0 246.9 14.6 117.7 18.5 10.4 
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Table 15. (continued) 

 
Thickness of 

Surface 
Course  

AVG 
Thickness 

DCP 
CBRAGG 

AVG 
DCP-

CBRAGG/ 
Ratinga 

DCP-
CBRSG 

AVG 
DCP-

CBRSG/ 
Ratingb 

In-situ Dry Unit 
Weight 

In-situ 
Moisture 

Content, % 

Section Name (mm) (in.) (mm) (in.) (%) (%) (%) (%) (lb/ft3) (KN/m3) (%) AVG 

(5) Base One 

101.0 4.0 

101.0 4.0 

28.6 

37.0/ G 

8.0 

16.4/ F-G 

122.5 19.2 8.7 

8.4 

101.0 4.0 22.1  12.1  124.8 19.6 8.8 

101.0 4.0 30.5  21.4  120.5 18.9 8.3 

101.0 4.0 42.1  19.9  127.6 20.0 7.5 

101.0 4.0 61.8  20.8  132.6 20.8 8.8 

(6) EMC 
Squared 

101.0 4.0 

101.0 4.0 

36.7 

34.2/ G 

23.4 

18.7/ F-G 

121.4 19.1 10.4 

10.5 

101.0 4.0 48.9  30.2  129.0 20.3 8.6 

101.0 4.0 32.1  14.3  120.4 18.9 10.6 

101.0 4.0 25.2  15.3  128.4 20.2 11.3 

101.0 4.0 28.2  10.3  121.9 19.1 11.5 

(7) Claycrete 

101.0 4.0 

101.0 4.0 

28.5 

40.5/ G 

11.8 

22.7/ VG 

125.7 19.7 9.3 

9.0 
101.0 4.0 57.4  19.6  121.5 19.1 8.6 
101.0 4.0 34.7  16.6  131.3 20.6 9.0 
101.0 4.0 37.2  14.7  129.5 20.3 9.2 
101.0 4.0 44.9  50.6  128.8 20.2 8.9 

(8) Aggregate 
Columns 

101.0 4.0 

101.0 4.0 

38.3 

37.4/ G 

20.4 

15.3/ F-G 

122.8 19.3 9.2 

9.0 

101.0 4.0 29.2  19.6  130.5 20.5 8.5 

101.0 4.0 26.3  10.4  126.7 19.9 10.0 

101.0 4.0 39.8  13.6  136.2 21.4 8.8 

101.0 4.0 53.4  12.7  132.5 20.8 8.5 
a SUDAS relative rating of supporting strengths as function of CBR for subbase: E=Excellent, VG=Very Good, G=Good, <G=below 
Good; b SUDAS relative rating of supporting strengths as function of CBR for subgrade: >VG=greater than Very Good, VG=Very 
Good, F-G=Fair-good, P-F=Poor-fair, VP=Very Poor 
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Figure 43 Washington demonstration sections' (1) DCP-CBR, (2) in-situ dry unit weight, and (3) 
in-situ moisture content 

The average DCP-CBRAGG of cement treated 4” surface is greatly higher than other 

sections, which is 169.9% with excellent SUDAS relative rating. The DCP-CBRAGG of all the 

other test sections are in a same range 30-40%. The average DCP-CBRSG of cement treated 12” 

subgrade section is 34.4% with the SUDAS relative rating of greater than very good, which is 

higher than all the other sections. The optimized gradation with clay slurry section’s average 

DCP-CBRSG (9.2%) only has poor fair SUDAS relative rating, which is lower than other 

sections. Adding cement into the soils can greatly increase the shear strength for both surface 

course (130% DCP-CBRAGG) and subgrade (15% DCP-CBRSG).  
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6.2.1.4 DCP Test Results of Hamilton Demonstration Sections 

The DCP tests in Hamilton County were conducted on November 15, 2018. The 

construction of test sections in Hamilton County was completed on September 06, 2018. The 

cumulative blows, DCPI, and DCP-CBR values versus depth for these sections are shown in 

Figures 44-45. The proposed cement treated sections in Hamilton County were not completed in 

2018. A hammer drill was used to penetrate the frozen depth since the test sections roadway 

surface were frozen during the day DCP test performed, Figure 44 and Figure 45 cannot show 

the entire profile of surface aggregate layer properties. The thickness of surface course shown in 

Table 16 was after corrected. Because the DCP tests performed in the test sections in Hamilton 

county skipped frozen depth which is the most part of surface course, the values of DCP-

CBRAGG are not accurate as other three counties. The DCP-CBR with SUDAS relative rating of 

analyzed surface layer and subgrade layer, in-situ surface dry density, and in-situ moisture 

content are summarized in Table 16.  

The in-situ moisture content for demonstration sections in Hamilton County varies a lot. 

The optimized gradation with clay slurry section and Claycrete section have the similar and 

lower moisture content. The in-situ dry unit weight for all section are similar and around 20 

KN/m3 (128.5 lb/c.f.). The possible reason of the low point of in-situ dry unit weight in aggregate 

columns section is that the test point is above the column position. Since the fill of columns are 

clean aggregates, the density of columns is lower than soils around. Because of the surface 

frozen, the values of DPC-CBRAGG have large variation especially and not trustable in EMC 

Squared section and Claycrete section. The DCP-CBRSG of optimized gradation section (18.1%/ 

F-G) and EMC Squared section (15.0%/ F-G) are slightly higher than others sections (7.0%-

9.4% P-F).  
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(a)                                      (b)                                     (c) 

Figure 44 DCP test results for optimized gradation with clay slurry section, Base One section, 
and EMC Squared section in Hamilton County: a) cumulative blows b) DCPI and c) DCP-CBR 
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(a)                                      (b)                                     (c) 

Figure 45 DCP test results for control section, Claycrete section, and aggregate columns section 
in Hamilton County: a) cumulative blows b) DCPI and c) DCP-CBR



www.manaraa.com

 

 

83 

Table 16 Summary of Hamilton Demonstration Sections: (1) DCP-CBR, (2) in-situ dry unit weight, and (3) in-situ moisture 

 
Section Name 

Corrected 
Thickness of 

Surface 
Coursea 

AVG 
Thickness 

DCP 
CBRAGG 

AVG 
DCP-

CBRAGG/ 
Ratingb 

DCP-
CBRSG 

AVG 
DCP-

CBRSG/ 
Ratingc 

In-situ Dry Unit 
Weight 

In-situ 
Moisture 

Content, % 

  (mm) (in.) (mm) (in.) (%) (%) (%) (%) (lb/ft3) (KN/m3) (%)  AVG 

(1) Optimized 
Gradation w/ 
Pattison Clay 

Slurry 

204.1 8.0 

168.3 6.6 

66.95 

48.9/ G 

39.4 

18.1/ F-G 

134.3 21.1 5.6 

5.7 
219.1 8.6 62.12  15.6  126.4 19.9 5.1 
140.1 5.5 49.34  9.2  129.0 20.3 5.2 
117.1 4.6 32.87  12.6  131.9 20.7 6.2 
161.1 6.3 33.29  14.0  138.3 21.7 6.6 

(5) EMC 
Squared 

241.1 9.5 

188.3 7.4 

43.4 

91.3/ E 

9.0 

15.0/ F-G 

119.7 18.8 13.3 

10.5 
142.1 5.6 23.1  7.9  115.0 18.1 15.3 
172.1 6.8 103.6  15.6  130.1 20.4 10.7 
155.1 6.1 63.4  13.2  134.4 21.1 6.4 
231.1 9.1 222.8  29.4  136.9 21.5 6.7 

(6) Control 

102.0 4.0 

102.0 4.0 

39.5 

26.0/ <G 

12.0 

9.1/ P-F 

132.9 20.9 6.6 

9.5 
102.0 4.0 27.3  5.7  133.7 21.0 7.9 
102.0 4.0 15.9  11.3  115.8 18.2 12.6 
102.0 4.0 24.7  7.4  130.7 20.5 10.1 
102.0 4.0 22.9  8.9  129.6 20.4 10.1 

(4) Base One 

147.9 5.8 

127.9 5.0 

35.1 

23.1/ <G 

9.3 

7.3/ P-F 

138.0 21.7 5.1 

7.8 
203.9 8.0 30.7  7.6  127.7 20.1 9.0 
71.9 2.8 16.1  5.8  133.5 21.0 8.9 
137.9 5.4 25.8  6.6  130.7 20.5 10.4 
77.9 3.1 7.6  7.3  140.5 22.1 5.5 
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Table 16. (continued) 

 
Corrected 

Thickness of 
Surface 
Course  

AVG 
Thickness 

DCP 
CBRAGG 

AVG 
DCP-

CBRAGG/ 
Ratinga 

DCP-
CBRSG 

AVG 
DCP-

CBRSG/ 
Ratingb 

In-situ Dry Unit 
Weight 

In-situ 
Moisture 

Content, % 

Section Name (mm) (in.) (mm) (in.) (%) (%) (%) (%) (lb/ft3) (KN/m3) (%) AVG 

(7) Claycrete 

204.8 8.1 

178.4 7.0 

75.6 

56.0/ VG 

6.6 

9.4/ P-F 

140.0 22.0 5.0 

6.2 
197.8 7.8 149.0 11.0 140.3 22.0 4.9 
183.8 7.2 13.6 5.0 141.0 22.1 5.0 
77.8 3.1 25.7 17.3 139.9 22.0 5.8 
227.8 9.0 16.2 6.9 135.8 21.3 5.1 

(8) Aggregate 
Columns 

137.0 5.4 

124.0 4.9 

18.9 

25.6/ <G 

6.3 

7.0/ P-F 

128.0 20.1 11.5 

10.4 
78.0 3.1 29.8 9.5 124.0 19.5 12.6 
110.0 4.3 24.4 5.0 106.4 16.7 15.7 
107.0 4.2 33.4 7.2 134.1 21.1 7.5 
188.0 7.4 21.4 7.1 135.9 21.3 5.9 

aThe values in this columns are corrected, see section 7.2.1.4; bSUDAS relative rating of supporting strengths as function of CBR for 
subbase: E=Excellent, VG=Very Good, G=Good, <G=below Good; c SUDAS relative rating of supporting strengths as function of 
CBR for subgrade: >VG=greater than Very Good, VG=Very Good, F-G=Fair-good, P-F=Poor-fair, VP=Very Poor 
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Figure 46 Hamilton demonstration sections: (1) DCP-CBR, (2) in-situ dry unit weight, and (3) 
in-situ moisture content 

According to the results above, cement treatment can greatly improve the strength of 

surface course material and subgrade. Optimized gradation with clay slurry can improve strength 

for surface course as well. Optimized gradation with clay slurry section has higher DCP-CBR 

comparing to control section in Cherokee County. In Howard County, control section has higher 

strength because of surface course was not disturbed during construction. Optimized gradation 

with clay slurry stabilization method can improve strength comparing to RAP and aggregate 

columns sections.  

Steel slag section in Cherokee county have no strength improvement. But in Howard 

County, Harsco steel slag method greatly improved strength of surface course and Phoenix steel 

slag sections shown strength improvement as well. The possible reason of this difference is 

because steel slag materials self-stabilization conducted slowly. Mathur et al. (1999) concluded 
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that the slag mixture initially behaves like unbound material, but it generally turns into a bound 

material because of the self-stabilization characteristics of slags. The time between the day of 

steel slag sections constructed and the day of DCP tests performed is 69 days in Howard County 

and days.  

In Washington County, cement treatment can greatly improve the strength of both surface 

course material and subgrade material. Optimized gradation with clay slurry method and other 

chemical stabilization methods can only create surface course have same strength as control 

section. The optimized gradation with clay slurry section does not have improvement may 

because of compaction and low aggregate quality. The DCP results of Hamilton County test 

sections of surface course are not reliable because of surface frozen.  

6.2.2 LWD Test Results 

The LWD tests were conducted at the same day as DCP tests performed. The optimized 

gradation with clay slurry section in both Cherokee County and Howard County had higher 

composite elastic modulus than those of other sections. In the Cherokee county, the composite 

elastic modulus measured in aggregate columns section was similar to the modulus of the 

optimized gradation section. In the Howard County, the control section had almost the same 

composite elastic modulus as the optimized gradation section. The composite elastic modulus of 

RAP and steel slag sections in both Howard County and Cherokee County were majorly than all 

other test sections. Figures 47-48 show the LWD results of the Cherokee County and the Howard 

County, respectively.  
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Figure 47 LWD test results of test sections in the Cherokee County 
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Figure 48 LWD test results of test sections in Howard County 
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The composite elastic modulus of the optimized gradation section and aggregate columns 

sections in the Cherokee County had the average 94.4 MPa (13.6 ksi) and 84.1 MPa (12.2 ksi). 

Other sections in Cherokee county had the average composite elastic modulus ranged from 63.7 

MPa (9.1 ksi) to 77.1 MPa (11.2 ksi). The composite elastic modulus of the optimized gradation 

section and control sections in the Howard County had the average of 83.8 MPa (12.2 ksi) and 

73.8 MPa (10.7 ksi). Other sections in the Cherokee county had the average of composite elastic 

modulus ranged from 31.5 MPa (4.6 ksi) to 67.2 MPa (9.7 ksi).  

In the Washington county, two cement treated sections had the higher composite elastic 

modulus than those of other test sections (average 98.9 MPa (14.3 ksi) for the cement treated 12” 

subgrade section and average 109.32 MPa (15.86 ksi) for the cement treated 4” surface section). 

The average composite elastic modulus of the gradation optimized with clay slurry sections was 

slightly higher than control section, 63.5 MPa (9.2 ksi). Other sections had average composite 

elastic modulus ranged from 33.3 MPa (4.83 ksi) to 50.37 MPa (7.3 ksi).  
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Figure 49 LWD Test results of test sections in Washington County 
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It should be noted that since the surface layer was frozen during testing in Hamilton 

County, the composite elastic modulus measured by LWD tests could higher than the values that 

would be measured under non-freezing conditions. The composite elastic modulus of the 

optimized gradation section and aggregate columns sections in the Hamilton County had the 

average of 89.5 MPa (13.0 ksi) and 79.4 MPa (11.5 ksi). Other sections in the Hamilton County 

had the average composite elastic modulus ranged from 100.1 MPa (14.5 ksi) to 123.7 MPa 

(17.9 ksi).  
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Figure 50 LWD test results of test sections in Hamilton County 

6.2.3 FWD Test Results 

The FWD test results of the surface course in Cherokee and Howard counties showed that 

the optimized gradation with clay slurry section had relative higher elastic modulus than all other 

test sections. Phoenix steel slag sections had the highest elastic modulus in the Cherokee County. 

However, the Harsco steel slag sections had the highest elastic modulus in the Howard County. 

Two cement sections had the highest elastic moduli in the Washington County. In the Hamilton 

County, the optimized gradation with clay slurry section and Claycrete section had the highest 
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elastic modulus. The FWD tests results for the surface layers are shown in Figures 51-54, and the 

FWD results for subgrade layers are shown in Figures 55-58. The cement treated 12” subgrade 

section had higher elastic modulus for the subgrade layer since the subgrade layer in that section 

was treated with Portland cement. The existing of a thin stiff layer in the subgrade could be used 

to explain why the elastic modulus of subgrade layer under Base One and EMC Squared sections 

were relatively higher than those of other subgrade moduli of test sections in Washington 

County.  
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Figure 51 FWD test results for surface course in Cherokee County 
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Figure 52 FWD test results for surface course in Howard County 
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Figure 53 FWD test results for surface course in Washington County 
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Figure 54 FWD Test results for surface course in Hamilton County 
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Figure 55 FWD test results for subgrade layer in Cherokee County 
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Figure 56 FWD test results for subgrade layer in Howard County 
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Figure 57 FWD test results for subgrade layer in Washington County 
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Figure 58 FWD test results for subgrade layer in Hamilton County 

For mechanically stabilization methods, optimized gradation with clay slurry and steel 

slag can improve the surface course stiffness. After construction, Phoenix steel slag section has 

higher elastic modulus than Harsco steel slag section. The surface course stiffness of Harsco 

steel slag section increased and Phoenix steel slag section decreased with time. The possible 

reason is that more large particles of Phoenix steel slag were moved to sides by passing traffics 

since it contains less fines and cannot bind together.  

The chemically stabilization methods only have cement treatment can increase stiffness 

for surface course and subgrade. The elastic modulus of cement treated subgrade section is also 

higher for surface course is because stronger subgrade can lead efficient compaction by 

construction and passing traffic for surface course.  
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6.2.4 Particle Size Distribution 

Representative samples of the surface material during construction were collected to 

monitor surface course gradation. The soil index properties are summarized in Tables 17-20 for 

all test sections. Soil index properties indicated that all the chemical sections met their 

requirements for the concentrated liquid stabilizer applications (section 3.2).    

The particles size distribution curves are shown in Figures 59-62. The surface materials’ 

gradation of mechanically stabilized test section in Cherokee County meet the Iowa DOT 

granular surface aggregate Class A&B specification (4120) (Iowa DOT 2012). The clean 

aggregate for aggregate columns section fill contains less than 1% fines (passing # 200 sieve). In 

Howard County, the gradation of surface materials from mechanically stabilized sections meet 

the Iowa DOT specification except Phoenix slag which is close to the specification and contains 

less fines. The fill clean aggregate for columns contains less than 1% fines. The surface material 

of optimized gradation with clay slurry section (mechanically stabilization method) in 

Washington and Hamilton counties meet the Iowa DOT specification. The fill aggregate for 

columns in Washington County contains less than 1% fines and the fill aggregate in Hamilton 

County contains 2.2% fines.  

The gradation of surface material in optimized gradation with clay slurry sections in all 

four counties are close to and slightly lower than the target optimized gradation curves. After 

compaction during construction and passing traffics, the large particles could break down and get 

closer to target gradation. The n value of target optimized gradation curve is 0.35 for Cherokee 

County and 0.4 for other three counties.   
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Table 17 Soil index properties of the surface materials collected at construction in Cherokee County 

 Cherokee County 

Section Name 
Aggregate 
Columnsa 

Optimized 
Gradation w/ 
Clay Slurry 

RAP 
Harsco Slag 

sections 
Phoenix Slag 

section 

Particle-size Distribution Results (ASTM D6913) 

Gravel Content 
(%) 

99.8 54.9 42.1 49.0 52.5 

Sand Content 
(%) 

0.2 31.8 53.4 43.1 44.6 

Silt Content (%) 0.0 6.3 3.0 6.4 1.7 
Clay Content 

(%) 
0.0 7.0 1.5 1.5 1.2 

D10 (mm) 10.1620 0.0164 0.4525 0.1614 0.6104 
D30 (mm) 12.4736 1.0117 1.5152 1.8705 2.5075 
D60 (mm) 15.5550 9.2258 5.1752 6.3757 6.9667 

Coefficient of 
Uniformity, cu 

1.53 563.39 11.43 39.50 11.41 

Coefficient of 
Curvature, cc 

0.98 6.78 0.98 3.40 1.48 

Atterberg Limits Test Results (Wasti 1987 & ASTM D4318-17) 

Liquid Limit (%) NP 28 NP NP NP 
Plastic Limit (%)   14       

AASHTO and USCS soil classification (ASTM D3282-17 & ASTM D2487-17) 
AASHTO 

Classification 
A-1-a A-2-6(0) A-1-a A-1-a A-1-a 

USCS 
Classification 

GP GC GP GP-GM GW 

Group Name 
 Poorly graded 

gravel 
 Clayey gravel 

with sand 

Poorly graded 
sand with 

gravel  

 Poorly graded 
gravel with silt 

and sand 

 Well-graded 
gravel with 

sand 
aThe numbers for aggregate columns section is the information of filled clean aggregates. 
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Table 18 Soil index properties of the surface materials collected at construction in Howard County 

 Howard County 

Section Name 
Optimized Gradation 

w/ Clay Slurry 
RAP 

Harsco Slag 
sections 

Phoenix Slag 
section 

Aggregate 
Columnsa 

Particle-size Distribution Results (ASTM D6913) 
Gravel Content 

(%) 
71.6 52.6 56.3 77.6 97.8 

Sand Content 
(%) 

14.6 42.4 33.0 22.2 2.2 

Silt Content (%) 10.6 4.6 9.4 0.0 0.0 
Clay Content (%) 3.2 0.4 1.3 0.2 0.0 

D10 (mm) 0.0259 0.5080 0.0690 2.1668 8.4193 
D30 (mm) 5.1281 2.6032 0.3381 6.3134 11.6160 
D60 (mm) 11.0046 6.6296 7.7217 11.7520 14.8601 

Coefficient of 
Uniformity, cu 

425.45 13.05 111.93 5.42 1.76 

Coefficient of 
Curvature, cc 

92.39 2.01 12.89 1.57 1.08 

Atterberg Limits Test Results (Wasti 1987 & ASTM D4318-17) 
Liquid Limit (%) 26 NP NP NP NA 
Plastic Limit (%) 17         

AASHTO and USCS soil classification (ASTM D3282-17 & ASTM D2487-17) 
AASHTO 

Classification 
A-2-4(0) A-1-a A-1-a A-1-a A-1-a 

USCS 
Classification 

GC GW-GM GP-GM GW GP 

Group Name Clayey gravel  
Well-graded 

gravel with silt 
and sand  

 Poorly graded 
gravel with silt 

and sand 

Well-graded 
gravel with 

sand  

 Poorly 
graded gravel 
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Table 19 Soil index properties of the surface materials collected at construction in Washington County 

 Washington County 

Section Name 

Optimized 
Gradation 
w/ Clay 
Slurry 

Cement 
Treated 12" 
Subgrade 

Cement 
Treated 4" 

Surface 
Base One 

EMC 
Squared 

Claycrete 
Aggregate 
Columnsa 

Particle-size Distribution Results (ASTM D6913)     
Gravel Content 

(%) 
55.4 47.7 69.5 33.3 26.9 31.3 96.8 

Sand Content (%) 24.5 34.1 27.3 25.3 25.7 31.0 3.2 
Silt Content (%) 10.7 13.0 2.7 27.4 30.6 19.7 0.0 
Clay Content (%) 9.4 5.2 0.5 14.0 16.8 18.0 0.0 

D10 (mm) 0.0056 0.0379 2.3072 0.0018 - - 9.2516 
D30 (mm) 1.3730 1.0582 4.6909 0.0249 0.0202 0.0217 13.1780 
D60 (mm) 8.5988 6.1738 9.3598 2.4059 0.3744 1.1821 17.9144 

Coefficient of 
Uniformity, cu 

1535.78 163.09 4.06 1318.91 - - 1.94 

Coefficient of 
Curvature, cc 

39.16 4.79 1.02 0.14 - - 1.05 

Atterberg Limits Test Results (Wasti 1987 & ASTM D4318-17)     
Liquid Limit (%) 27 NP NP 27 31 28 NP 
Plastic Limit (%) 14     11 15 14   

AASHTO and USCS soil classification (ASTM D3282-17 & ASTM D2487-17)     
AASHTO 

Classification 
A-2-6(0) A-1-b A-1-a A-6(2) A-6(4) A-4(0) A-a-a 

USCS 
Classification 

GC GM GP GC GC GM GP 

Group Name 
Clayey 
gravel 

with sand  

 Silty gravel 
with sand 

 Well-graded 
gravel with 

sand  

Clayey 
gravel with 

sand  

 Clayey 
gravel with 

sand 

Silty gravel 
with sand  

Poorly 
graded 
gravel  



www.manaraa.com

 

 

99 
Table 20 Soil index properties of the surface materials collected at construction in Hamilton County 

 Hamilton County 

Section Name 
Optimized 

Gradation w/ 
Clay Slurry 

Base One 
EMC 

Squared  
Claycrete 

Aggregate 
Columnsa 

Particle-size Distribution Results (ASTM D6913) 

Gravel Content (%) 48.2 35.4 43.1 30.6 94.4 

Sand Content (%) 23.6 41.7 38.6 52.8 3.4 
Silt Content (%) 9.2 11.8 10.0 5.8 

2.2 
Clay Content (%) 6.7 11.1 8.3 10.8 

D10 (mm) 0.0150 0.0040 0.0090 0.0040 5.9507 
D30 (mm) 1.6554 0.2399 0.5618 0.3376 10.0812 
D60 (mm) 10.2715 3.5016 5.4767 2.4241 15.8303 

Coefficient of 
Uniformity, cu 

685.23 880.73 608.52 609.39 2.66 

Coefficient of 
Curvature, cc 

17.80 4.14 6.40 11.82 1.08 

Atterberg Limits Test Results (Wasti 1987 & ASTM D4318-17) 
Liquid Limit (%) 23 20 26 17 NP 
Plastic Limit (%) 13 11 17 9   

AASHTO and USCS soil classification (ASTM D3282-17 & ASTM D2487-17) 
AASHTO 

Classification 
A-2-4(0) A-2-4(0) A-2-4(0) A-2-4(0) A-1-a 

USCS Classification GC-GM SC GC SC GP 

Group Name 
Clayey 

gravel with 
sand  

Clayey 
gravel with 

sand  

 Clayey 
gravel with 

sand 

 Clayey sand 
with gravel 

 Poorly 
graded gravel 
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Most of the test sections’ surface material met the Iowa DOT specification for granular 

surfacing material (4120) (Iowa DOT 2012). The gradation of surface materials collected from 

Base One and Claycrete sections were out of the range since subgrade was mixed in for the 

concentrated liquid stabilizers requirements.  

The clay content of Base One section surface material is 14.0% in Washington County 

and 11.1% in Hamilton County (Base One requirement is 8-15%). The clay fraction of Claycrete 

section surface material is 18.0% in Washington County and 10.8% in Hamilton County 

(Claycrete requirement is above 10%). The PI of Claycrete section surface material is 14 in 

Washington County and 8 in Hamilton County (Claycrete requirement is above 7). The CEC 

values of Claycrete sections in both Washington and Hamilton counties are blow than 400 (252 

in Washington, 86.4 in Hamilton).  

The gradation of EMC Squared surface material in Washington County suppose similar 

to below Base and Claycrete sections, contains less fines, since surface should not incorporate 

subgrade. During the construction, EMC Squared section incorporated some subgrade results the 

surface material contains more fines, gradation curve above Base One and Claycrete sections.  
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Figure 59 Particle-size distribution curves of materials collected in Cherokee county at 
construction 
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Figure 60 Particle-size distribution curves of materials collected in Howard County at 
construction 
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Figure 61 Particle-Size distribution curves of materials collected in Washington County at 
construction 
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Figure 62 Particle-size distribution curves of materials collected in Hamilton County at 
construction 
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6.2.5 Dustometer Results 

The dustometer tests were performed on October 30, 2018 on the Howard County, 

November 13, 2018 on the Cherokee County and the Hamilton County, and November 14, 2018 

on the Washington County.  The results are shown in Figure 63.  The parameter used for 

comparisons between each test section was equivalent to gram dust generated per mile.  Since 

the road moisture condition varied for different sites, the fugitive dust generated varied a lot 

between counties. In Howard County, the aggregate columns section creates the most dust and 

optimized gradation with clay slurry section creates the least dust. In Cherokee County, the 

control section creates the most dust and the Harsco steel sections creates the least dust. In 

Hamilton County, the aggregate columns section creates the most dust and EMC Squared section 

creates the least dust.  In Washington County, EMC Squared section creates the least dust and 

other sections creates same level dust. The weather information was recorded when the 

dustometer performed (Table 21).  

Table 21 Weather information for dustometer 

Location  Test Date 
Temperature 

(°C) 
Humidity 

(%) 

Wind 
Speed, 
(km/h) 

Precipitation. in Past 
3 days 

Cherokee County 
11/23/2018 -3 68% 8 

1 in. snow 
(11/11/2018) 

Howard County 10/30/2018 7 70% 16 No 
Washington 
County 

11/14/2018 -5 93% 8 No 

Hamilton County 11/13/2018 -7 80% 16 No 
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Figure 63 Dustometer results 
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6.2.6 Visual Surveys with Photographs 

The photographs were taken during DCP and LWD testing to evaluate the 

roadway surface conditions. Figure 64 includes the pictures taken in Cherokee County 

and Howard County, which consist of mechanically stabilized test sections (aggregate 

columns, optimized gradation with clay slurry, ground tire rubber, RAP, 2-in. slag surface, 

and 4-in. slag surface). Figure 65 includes the pictures taken in Washington County and 

Hamilton County, which has all the chemical stabilized test sections and the two 

mechanically stabilized test sections (Base One, EMC Squared, Claycrete, aggregate 

columns, and optimized gradation with clay slurry). Pictures showed that there was no 

obvious rutting or other major performance failures on test sections few weeks/months 

after their constructions were completed. Only few potholes appeared in the optimized 

gradation with clay slurry section in the Cherokee county and 4” Harsco steel slag section 

in the Howard County. Phoenix steel slag sections have more loose aggregates on sides 

comparing to Harsco steel slag sections.  
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Figure 64 Survey photos of test sections in (a) Cherokee county and (b) Howard County 
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Figure 65 Survey photos of test sections in (a) Washington county and (b) Hamilton 
County 
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CHAPTER 7.    CONCLUSIONS AND RECOMMEDATIONS 

7.1 Conclusions 

All of the demonstration sections can be stabilized well and have good quality 

surfaces immediately after construction except the section utilized ground tire rubber 

method. Only 20 % ground tire rubber by volume was incorporated in the bottom 50.8 

mm (2 in.) of a 101.6 mm (4 in.) thick surface course, but the ground tire rubber cannot 

stay in the bottom part results a soft, unstable surface that had to be removed. Applying 

clay slurry to ground tire rubber section was tried to bind particles, but it did not farm up 

after couple days.  

The mechanical stabilization methods can be easily implemented by county 

secondary roads departments with available equipment and crews. The clay slurry results 

in a rather wet construction procedure, but the surface is passable by the end of 

construction. Disk plow harrow was used in Cherokee County for RAP section, it could 

allow county engineers efficiently mix surface course materials to uniform. 

The auger used for aggregate columns installation was always pasted on sticky clay after 

every drill. Manually cleaning the auger was time consuming but necessary after each 

drilling in some counties, and resulted installation process slowly. The clean aggregate 

fill has to be done immediately after the hole was drilled in case collapse, because to the 

fully saturated subgrade was soft.  

Chemical stabilization methods require using RoadHog reclaimer to mix the 

cement treated surface course and liquid stabilizers effectively and uniformly. The 

existing of boulders and cobbles in top 152.4 mm (6 in.) could slow the work and cause 

damage to the bay door hinges.  
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For liquid stabilizer sections, to adjust the surface course material incorporated 

existing subgrade until workable and meet the optimal moisture content, water was added 

during the construction. But the surface was soft at the end of construction and easily has 

rutting problem, following shaping and compaction were needed in the few days after 

construction.  

For cement stabilization methods, a power spreader truck was necessary to apply 

cement power and a sheepsfoot vibratory compactor was needed to compact the cement 

treated subgrade. The roadway has to be closed at least a night for stabilizing.  

Both Harsco slag and Phoenix slag sections’ surface course performed like 

unbound material at the end of construction. Fourteen days were consumed for self-

stabilization before DCP test conducted for slag sections in Cherokee County, 68 days 

were consumed for slag sections in Howard County. Both Harsco slag sections and 

Phoenix slag section performed higher DCP-CBRAGG values in Howard County which 

has longer time to self-stabilize. Phoenix slag sections exhibited more loose aggregate 

than Harsco slag section.  

Cement mixing can greatly improve the DCP-CBR and elastic modulus for both 

surface course aggregates and subgrade. Cement treated 304.8 mm (12 in.) subgrade 4% 

by weight and cemented treated 101.6 mm (4 in.) surface 7 % by weight performed same 

improvement for composite elastic modulus.  

The surface course materials for most of mechanically stabilized sections as well as 

cement treated sections are fitted or close to the Iowa DOT specification (4120) (Iowa 

DOT 2012).  
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Incorporating clay could increase materials’ shear strength in unconfined 

condition but decrease it in confined condition. The incorporated existing subgrade for 

chemical stabilizations methods to meet the required binder content was also increasing 

the silt content which result that surface course materials out of Iowa DOT specification 

for granular surfacing material and low in-situ strength.  

Optimized gradation with clay slurry comparing with control section shows 

improvement of DCP-CBRAGG in Cherokee and Hamilton counties, no improvement in 

Washington and Howard counties. But the optimized gradation with clay slurry section in 

Howard County still performed better than RAP and aggregate columns, as good as 

Phoenix slag. It also shows increasing of surface course elastic modulus or composite 

elastic modulus for all counties.  

All concentrated liquid stabilizers don’t show any obvious improvement at the 

end of construction with current gradations.  

All of the demonstration sections performed stiff, smooth and good quality 

surfaces with few potholes after a period of construction except the section utilized 

ground tire rubber method. 

7.2 Recommendations 

Steel slag material performed unbound at early time, adding clayey fines could 

reduce loose aggregate and protect surface course during self-stabilization period.  

Mixing clay products for liquid stabilizer sections instead of nature subgrade could 

reduce none cohesive fine incorporated into surface layer, and it will result surface 

materials’ gradation fitting Iowa DOT specification (2012) and closing to the optimal 

gradation. This may lead more obvious improvement to shear strength and elastic 

modulus.  
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Disc plow harrow could also use for optimized gradation with clay slurry, it is fast 

and effective for mixing surface course materials.  

The best proportion of clay content could be determined for optimized gradation 

sections according to the particle distribution. Put several loads of dry aggregate 

materials would be an efficient way to solve the wet roadway surface at the end of 

construction.  
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APPENDIX A. BASE ONE APPLICATION INSTRUCTION 

 

Figure 66 MnDOT stabilized full depth reclamation Base One specification 
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APPENDIX B. IOWA COUNTY TRAFFIC MAP 

 

Figure 67 Cherokee County traffic map 
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Figure 68 Howard County traffic map 
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Figure 69 Washington County traffic map 
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Figure 70 Hamilton County traffic map 
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APPENDIX C. TEST SECTIONS LAYOUT 

 

Figure 71 Cherokee County test sections layout 
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Figure 72 Howard County test sections layout 
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Figure 73 Washington County test sections layout 
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Figure 74 Hamilton County test sections layout 
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APPENDIX D. TEST SECTIONS LOCATION 

 

Figure 75 County locations of test sections 
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APPENDIX E. PHOTOS OF TEST SECTIONS AT END OF CONSTRUCTION 

 

Figure 76 Optimized gradation sections at end of construction (a) Cherokee (b) Howard 
(c) Washington (d) Hamilton 
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Figure 77 Ground tire rubber section (a) test section in Howard County (b and c) Howard 
test section surface 

 

Figure 78 RAP sections at end of construction (a) Cherokee (b) Howard 
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Figure 79 Harsco steel slag sections at end of construction (a) Cherokee (b) Howard 

 

Figure 80 Phoenix steel slag sections at end of construction (a) Cherokee (b) Howard 

 

Figure 81 (a) Cement treated surface section (b) Cement treated subgrade section in 
Washington County at end of construction 

 

Figure 82 EMC Squared sections at end of construction (a) Washington (b) Hamilton 
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Figure 83 Base One sections at end of construction (a) Washington (b) Hamilton, and 
Claycrete sections at end of construction (c) Washington (d) Hamilton 
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